Publications by authors named "Adam Hogan"

PHAHST (potentials with high accuracy, high speed, and transferability) is a recently developed force field that utilizes exponential repulsion, multiple dispersion terms, explicit many-body polarization, and many-body van der Waals interactions. The result is a systematic approach to force field development that is computationally practical. Here, PHAHST is employed in the simulation for rare gas uptake of krypton and xenon in the metal-organic material, HKUST-1.

View Article and Find Full Text PDF

Efficient separation of Kr from Kr/Xe mixtures is pivotal in nuclear waste management and dark matter research. Thus far, scientists have encountered a formidable challenge: the absence of a material with the ability to selectively adsorb Kr over Xe at room temperature. This study presents a groundbreaking transformation of the renowned metal-organic framework (MOF) CuBTC, previously acknowledged for its Xe adsorption affinity, into an unparalleled Kr-selective adsorbent.

View Article and Find Full Text PDF

The parent of an adolescent patient noticed an upcoming appointment in the patient's portal account that should have remained confidential to the parent. As it turned out, this parent was directly accessing their child's adolescent patient portal account instead of using a proxy account. After investigation of this case, it was found that the adolescent account had been activated with the parent's demographic (i.

View Article and Find Full Text PDF

A combined experimental and theoretical study of CH and CO adsorption and separation was performed in two isostructural molecular porous materials (MPMs): ([Cu(adenine)Cl]Cl) and ([Cu(adenine)(TiF)]). It was revealed that displayed higher low-pressure uptake, isosteric heat of adsorption (), and selectivity for CH than CO, whereas the opposite was observed for . While contains only one type of accessible channel, which has a greater preference toward CH, contains three distinct accessible channels, one of which is a confined region between two large channels that represents the primary binding site for both adsorbates.

View Article and Find Full Text PDF

Purpose: Managing confidential adolescent health information in patient portals presents unique challenges. Adolescent patients and guardians electronically access medical records and communicate with providers via portals. In confidential matters like sexual health, ensuring confidentiality is crucial.

View Article and Find Full Text PDF

Background: OpenNotes, the sharing of medical notes via a patient portal, has been extensively studied in adults but not in pediatric populations. This has been a contributing factor in the slower adoption of OpenNotes by children's hospitals. The 21st Century Cures Act Final Rule has mandated the sharing of clinical notes electronically to all patients and as health systems prepare to comply, some concerns remain particularly with OpenNotes for pediatric populations.

View Article and Find Full Text PDF

PHAHST (potentials with high accuracy, high speed, and transferability) intermolecular potential energy functions have been developed from first principles for H, N, the noble gases, and a metal-organic material, HKUST-1. The potentials are designed from the outset to be transferable to heterogeneous environments including porous materials, interfaces, and material simulations. This is accomplished by theoretically justified choices for all functional forms, parameters, and mixing rules, including explicit polarization in every environment and fitting to high quality electronic structure calculations using methods that are tractable for real systems.

View Article and Find Full Text PDF

Simultaneous removal of trace amounts of propyne and propadiene from propylene is an important but challenging industrial process. We report herein a class of microporous metal-organic frameworks (NKMOF-1-M) with exceptional water stability and remarkably high uptakes for both propyne and propadiene at low pressures. NKMOF-1-M separated a ternary propyne/propadiene/propylene (0.

View Article and Find Full Text PDF

Grand canonical Monte Carlo (GCMC) simulations of gas sorption were performed in Cu-TDPAH, also known as rht-MOF-9, hereafter [1], a metal-organic framework (MOF) with rht topology consisting of Cu ions coordinated to 2,5,8-tris(3,5-dicarboxyphenylamino)-1,3,4,6,7,9,9b-heptaazaphenalene (TDPAH) ligands. This MOF is notable for the presence of open-metal copper sites and high nitrogen content on the linkers. [1] Exhibits one of the highest experimental H uptakes at 77 K/1 atm within the extant rht-MOF family (ca.

View Article and Find Full Text PDF

A new hybrid ultramicroporous material, [Ni(1,4-di(pyridine-2-yl)benzene)(CrO)] (DICRO-4-Ni-i), has been prepared and structurally characterized. Pure gas sorption isotherms and molecular modeling of sorbate-sorbent interactions imply strong selectivity for CH over CO (S). Dynamic gas breakthrough coupled with temperature-programmed desorption experiments were conducted on DICRO-4-Ni-i and two other porous materials reported to exhibit high S, TIFSIX-2-Cu-i and MIL-100(Fe), using a CH/CO/He (10:5:85) gas mixture.

View Article and Find Full Text PDF

The demand for Xe/Kr separation continues to grow due to the industrial significance of high-purity Xe gas. Current separation processes rely on energy intensive cryogenic distillation. Therefore, less energy intensive alternatives, such as physisorptive separation, using porous materials, are required.

View Article and Find Full Text PDF

A combined inelastic neutron scattering (INS) and theoretical study of H2 sorption in Y-FTZB, a recently reported metal-organic framework (MOF) with fcu topology, reveals that the strongest binding site in the MOF causes a high barrier to rotation on the sorbed H2. This rotational barrier for H2 is the highest yet of reported MOF materials based on physisorption.

View Article and Find Full Text PDF

Simulations of H2 and CO2 sorption were performed in the metal-organic framework (MOF), [Cu(Me-4py-trz-ia)]. This MOF was recently shown experimentally to exhibit high uptake for H2 and CO2 sorption and this was reproduced and elucidated through the simulations performed herein. Consistent with experiment, the theoretical isosteric heat of adsorption, Q(st), values were nearly constant across all loadings for both sorbates.

View Article and Find Full Text PDF