Introduction: Left bundle branch area pacing (LBBAP) is achieved by advancing the lead tip deep in the septum. Most LBBAP implants are performed using the Medtronic SelectSecure™ MRI SecureScan™ Model 3830 featuring a unique 4 Fr fixed helix lumenless design. Details of lead use conditions and long-term reliability have not been reported.
View Article and Find Full Text PDFBackground: Pace-sense conductors comprise a pacing coil to the tip electrode and cable to the ring-electrode. Implantable cardioverter-defibrillator (ICD) lead-monitoring diagnostics include pacing impedance (direct current resistance [DCR]) and measures of oversensing. How they change as fractures progress is unknown.
View Article and Find Full Text PDFImplantable cardioverter-defibrillators (ICDs) incorporate automated, lead-monitoring alerts (alerts) and other diagnostics to detect defibrillation lead failure (LF) and minimize its adverse clinical consequences. Partial conductor fractures cause oversensing, but pacing or high-voltage alerts for high impedance detect only complete conductor fracture. In both pacing and high-voltage insulation breaches, low-impedance alerts require complete breach with metal-to-metal contact.
View Article and Find Full Text PDFBackground: Development of a cardiac lead fracture model has the potential to differentiate well-performing lead designs from poor performing ones and could aid in future lead development.
Objective: The purpose of this study was to demonstrate a predictive model for lead fracture and validate the results generated by the model by comparing them to observed 10-year implantable cardioverter-defibrillator lead fracture-free survival.
Methods: The model presented here uses a combination of in vivo patient data, in vitro conductor fatigue test data, and statistical simulation to predict the fracture-free survival of cardiac leads.
In silico clinical trials, defined as "The use of individualized computer simulation in the development or regulatory evaluation of a medicinal product, medical device, or medical intervention," have been proposed as a possible strategy to reduce the regulatory costs of innovation and the time to market for biomedical products. We review some of the the literature on this topic, focusing in particular on those applications where the current practice is recognized as inadequate, as for example, the detection of unexpected severe adverse events too rare to be detected in a clinical trial, but still likely enough to be of concern. We then describe with more details two case studies, two successful applications of in silico clinical trial approaches, one relative to the University of Virginia/Padova simulator that the Food and Drug Administration has accepted as possible replacement for animal testing in the preclinical assessment of artificial pancreas technologies, and the second, an investigation of the probability of cardiac lead fracture, where a Bayesian network was used to combine in vivo and in silico observations, suggesting a whole new strategy of in silico-augmented clinical trials, to be used to increase the numerosity where recruitment is impossible, or to explore patients' phenotypes that are unlikely to appear in the trial cohort, but are still frequent enough to be of concern.
View Article and Find Full Text PDFEvaluation of medical devices via clinical trial is often a necessary step in the process of bringing a new product to market. In recent years, device manufacturers are increasingly using stochastic engineering models during the product development process. These models have the capability to simulate virtual patient outcomes.
View Article and Find Full Text PDFSegmented polyurethane multiblock polymers containing polydimethylsiloxane and polyether soft segments form tough and easily processed thermoplastic elastomers (PDMS-urethanes). Two commercially available examples, PurSil 35 (denoted as P35) and Elast-Eon E2A (denoted as E2A), were evaluated for abrasion and fatigue resistance after immersion in 85 °C buffered water for up to 80 weeks. We previously reported that water exposure in these experiments resulted in a molar mass reduction, where the kinetics of the hydrolysis reaction is supported by a straight forward Arrhenius analysis over a range of accelerated temperatures (37-85 °C).
View Article and Find Full Text PDF