Publications by authors named "Adam Hawkridge"

Neutrophil elastase (NE) has been reported to be a pro-inflammatory stimulus for macrophages. The aim of the present study was to determine the impact of NE exposure on the human macrophage proteome and evaluate its impact on pro-inflammatory signals. Human blood monocytes from healthy volunteers were differentiated to macrophages and then exposed to either 500 nM of NE or control vehicle for 2 h in triplicate.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how cancer cells influence the fitness of surrounding tumor microenvironment (TME) cells through a mechanism involving a long non-coding RNA called Tu-Stroma, which alters the expression of Flower isoforms, impacting their growth advantage.
  • The expression of Flower Win isoforms in cancer cells enhances their dominance over TME cells that express Flower Lose isoforms, leading to reduced fitness in the TME.
  • Targeting Flower proteins with a humanized monoclonal antibody in mice has shown promising results, significantly reducing cancer growth and metastasis while improving survival rates and protecting organs from potential lesions.
View Article and Find Full Text PDF
Article Synopsis
  • - Mass spectrometry in chemoproteomics aims to directly identify where small molecules bind to target proteins, but it faces challenges like low protein abundance and difficulties in identifying modification sites with standard software.
  • - Researchers explored BODIPY FL azide as a labeling reagent, utilizing its unique boron isotopes to develop a method that improves the detection of labeled peptides through a specific intensity ratio and mass defect filtering.
  • - The study showed that using BODIPY for labeling not only increased peptide identification from complex samples but also offered a distinct isotopic signature, which could be useful for both UV and fluorescence detection methods.
View Article and Find Full Text PDF

Biological functions of the highly conserved ubiquitin-like protein 5 (UBL5) are not well understood. In Caenorhabditis elegans, UBL5 is induced under mitochondrial stress to mount the mitochondrial unfolded protein response (UPR). However, the role of UBL5 in the more prevalent endoplasmic reticulum (ER) stress-UPR in the mammalian system is unknown.

View Article and Find Full Text PDF

Patients with cystic fibrosis (CF) have decreased severity of severe acute respiratory syndrome-like coronavirus-2 (SARS-CoV-2) infections, but the underlying cause is unknown. Patients with CF have high levels of neutrophil elastase (NE) in the airway. We examined whether respiratory epithelial angiotensin-converting enzyme 2 (ACE-2), the receptor for the SARS-CoV-2 spike protein, is a proteolytic target of NE.

View Article and Find Full Text PDF

Neutrophil extracellular traps increase cystic fibrosis (CF) airway inflammation. We hypothesized that macrophage exposure to neutrophil elastase (NE) would trigger the release of macrophage extracellular traps (METs), a novel mechanism to augment NE-induced airway inflammation in CF. Experiments were performed using human blood monocyte derived macrophages (hBMDM) from patients with and without CF to test specific mechanisms associated with MET release, and MET release by NE was confirmed in alveolar macrophages from -null and wild-type littermate mice exposed to intratracheal NE .

View Article and Find Full Text PDF

Patients with cystic fibrosis (CF) have defective macrophage phagocytosis and efferocytosis. Several reports demonstrate that neutrophil elastase (NE), a major inflammatory protease in the CF airway, impairs macrophage phagocytic function. To date, NE-impaired macrophage phagocytic function has been attributed to cleavage of cell surface receptors or opsonins.

View Article and Find Full Text PDF

The 3-O sulfate-modified -GlcNS3S6S- monosaccharide in heparin and heparan sulfate glycosaminoglycans (HSGAGs) is a relatively rare yet important modification that facilitates HSGAG-antithrombin binding and subsequent anticoagulant activity. Detecting this modification in complex HSGAG mixtures is a longstanding goal to identify novel 3-O-sulfated HSGAG-protein interactions with biologically significant functions. Tandem mass spectrometry has been applied to HSGAG structural analysis but is limited by the fact that traditional collision-induced dissociation techniques (e.

View Article and Find Full Text PDF

Background: Fluid resuscitation plays a prominent role in stabilizing trauma patients with hemorrhagic shock yet there remains uncertainty with regard to optimal administration time, volume, and fluid composition (e.g., whole blood, component, colloids) leading to complications such as trauma-induced coagulopathies (TIC), acidosis, and poor oxygen transport.

View Article and Find Full Text PDF

Studies of radiation interaction with tumor cells often focus on apoptosis as an end point; however, clinically relevant doses of radiation also promote autophagy and senescence. Moreover, functional p53 has frequently been implicated in contributing to radiation sensitivity through the facilitation of apoptosis. To address the involvement of apoptosis, autophagy, senescence and p53 status in the response to radiation, the current studies utilized isogenic H460 non-small cell lung cancer cells that were either p53-wild type (H460wt) or null (H460crp53).

View Article and Find Full Text PDF

Cancer cells undergo metabolic reprogramming such as enhanced aerobic glycolysis, mutations in the tricarboxylic acid cycle enzymes, and upregulation of de novo lipid synthesis and glutaminolysis. These alterations are pivotal to the development and maintenance of the malignant phenotype of cancer cells in unfavorable tumor microenvironment or metastatic sites. Although mitochondrial fatty acid β-oxidation (FAO) is a primary bioenergetic source, it has not been generally recognized as part of the metabolic landscape of cancer.

View Article and Find Full Text PDF
Article Synopsis
  • Dineolignans manassantin A and B, traditionally used for ailments like edema and jaundice, target specific molecular pathways such as NF-κB and MAPK but their exact roles in therapeutic effects are still unclear.
  • Recent studies have shown that manassantin inhibits mitochondrial complex I activity in mammalian cells, leading to reduced ATP levels and activation of AMP-activated protein kinase (AMPK).
  • This adaptive response causes an up-regulation of aerobic glycolysis, indicating manassantin significantly affects energy metabolism and how cells utilize oxygen.
View Article and Find Full Text PDF

Autophagy, a conserved cellular process by which cells recycle their contents either to maintain basal homeostasis or in response to external stimuli, has for the past two decades become one of the most studied physiological processes in cell biology. The 2016 Nobel Prize in Medicine and Biology awarded to Dr. Ohsumi Yoshinori, one of the first scientists to characterize this cellular mechanism, attests to its importance.

View Article and Find Full Text PDF

Structural characterization of the microheterogeneity of heparin, heparan sulfate, and other glycosaminoglycans is a major analytical challenge. We present the use of a stable isotope-labeled hydrazide tag (INLIGHT™) with high-resolution/accurate mass (HRAM) reverse-phase LC-MS/MS, which was recently introduced for detailed study of N-glycan heterogeneity, to characterize heparinase-digested heparin (digHep) products without the use of semi-volatile ion pairing reagents. Using both full scan LC-MS and data-dependent LC-MS/MS, we identified 116 unique digHep species, a feat possible because of INLIGHT™ labeling.

View Article and Find Full Text PDF

Ovarian cancer (OVC) remains the most lethal gynecological malignancy in the world due to the combined lack of early-stage diagnostics and effective therapeutic strategies. The development and application of advanced proteomics technology and new experimental models has created unique opportunities for translational studies. In this study, we investigated the ovarian cancer proteome of the chicken, an emerging experimental model of OVC that develops ovarian tumors spontaneously.

View Article and Find Full Text PDF

The plasma proteome remains an attractive biospecimen for MS-based biomarker discovery studies. The success of these efforts relies on the continued development of quantitative MS-based proteomics approaches. Herein we report the use of the SILAC-labeled HepG2 secretome as a source for stable isotope labeled plasma proteins for quantitative LC-MS/MS measurements.

View Article and Find Full Text PDF

The chicken is a unique experimental model for studying the spontaneous onset and progression of ovarian cancer (OVC). The prevalence of OVC in chickens can range from 5 to 35% depending on age, genetic strain, reproductive history, and diet. Furthermore, the chicken presents epidemiological, morphological, and molecular traits that are similar to human OVC making it a relevant experimental model for translation research.

View Article and Find Full Text PDF

A novel form of ovomacroglobulin/ovostatin (OVOS2) predicted from EST data was previously identified in the chicken ovarian cancer model using a mass spectrometry-based shotgun label-free proteomics strategy. The quantitative label-free data from plasma showed a significant increase over time with the spontaneous onset and progression of ovarian cancer making it a potential protein biomarker for further study. Two other proteins of interest identified from this initial study included vitellogenin-1 (Vit-1), a lipid-transport protein tied to egg production, and transthyretin (TTR), a retinol binding transport protein currently used in the clinical management of ovarian cancer.

View Article and Find Full Text PDF

Spontaneous epithelial ovarian cancer (EOC) in the chicken presents a similar pathogenesis compared with humans including CA-125 expression and genetic mutational frequencies (e.g., p53).

View Article and Find Full Text PDF

The TripleTOF 5600 System, a hybrid quadrupole time-of-flight mass spectrometer, was evaluated to explore the key figures of merit in generating peptide and protein identifications that included spectral acquisition rates, data quality, proteome coverage, and biological depth. Employing a Saccharomyces cerevisiae tryptic digest, careful consideration of several performance features demonstrated that the speed of the TripleTOF contributed most to the resultant data. The TripleTOF system was operated with 8, 20, and 50 MS/MS events in an effort to compare with other MS technologies and to demonstrate the abilities of the instrument platform.

View Article and Find Full Text PDF

Design of experiments (DOE) was used to determine improved settings for a LTQ-Orbitrap XL to maximize proteome coverage of Saccharomyces cerevisiae. A total of nine instrument parameters were evaluated with the best values affording an increase of approximately 60% in proteome coverage. Utilizing JMP software, 2 DOE screening design tables were generated and used to specify parameter values for instrument methods.

View Article and Find Full Text PDF

Biomarker discovery efforts in serum and plasma are greatly hindered by the presence of high abundance proteins that prevent the detection and quantification of less abundant, yet biologically significant, proteins. The most common method for addressing this problem is to specifically remove the few abundant proteins through immunoaffinity depletion/subtraction. Herein, we improved upon this method by utilizing multiple depletion columns in series, so as to increase the efficiency of the abundant protein removal and augment the detection/identification of less abundant plasma proteins.

View Article and Find Full Text PDF

The domestic chicken (Gallus domesticus) has emerged as a powerful experimental model for studying the onset and progression of spontaneous epithelial ovarian cancer (EOC) with a disease prevalence that can exceed 35% between 2 and 7 years of age. An experimental strategy for biomarker discovery is reported herein that combines the chicken model of EOC, longitudinal plasma sample collection with matched tissues, advanced mass spectrometry-based proteomics, and concepts derived from the index of individuality (Harris, Clin Chem 20: 1535-1542, 1974). Blood was drawn from 148 age-matched chickens starting at 2.

View Article and Find Full Text PDF

Biomarker discovery and proteomics have become synonymous with mass spectrometry in recent years. Although this conflation is an injustice to the many essential biomolecular techniques widely used in biomarker-discovery platforms, it underscores the power and potential of contemporary mass spectrometry. Numerous novel and powerful technologies have been developed around mass spectrometry, proteomics, and biomarker discovery over the past 20 years to globally study complex proteomes (e.

View Article and Find Full Text PDF

Age-related macular degeneration (AMD) is the leading cause of legal blindness among the elderly population in the industrialized world, affecting about 14 million people in the United States alone. Smoking is a major environmental risk factor for AMD, and hydroquinone is a major component in cigarette smoke. Hydroquinone induces the formation of cell membrane blebs in human retinal pigment epithelium (RPE).

View Article and Find Full Text PDF