Publications by authors named "Adam Harman"

Anthropogenic impacts can lead to increased temperatures in freshwater environments through thermal effluent and climate change. Thermal preference of aquatic organisms can be modulated by abiotic and biotic factors including environmental temperature. Whether increased temperature during embryogenesis can lead to long-term alterations in thermal preference has not been explicitly tested in native freshwater species.

View Article and Find Full Text PDF

AbstractDetermining the resilience of a species or population to climate change stressors is an important but difficult task because resilience can be affected both by genetically based variation and by various types of phenotypic plasticity. In addition, most of what is known about organismal responses is for single stressors in isolation, but environmental change involves multiple environmental factors acting in combination. Here, our goal is to summarize what is known about phenotypic plasticity in fishes in response to high temperature and low oxygen (hypoxia) in combination across multiple timescales, to ask how much resilience plasticity may provide in the face of climate change.

View Article and Find Full Text PDF

Characterizing the thermal preference of fish is important in conservation, environmental and evolutionary physiology and can be determined using a shuttle box system. Initial tank acclimation and trial lengths are important considerations in experimental design, yet systematic studies of these factors are missing. Three different behavioral assay experimental designs were tested to determine the effect of tank acclimation and trial length (hours of tank acclimation:behavioral trial: 12:12, 0:12, 2:2) on the temperature preference of juvenile lake whitefish (Coregonus clupeaformis), using a shuttle box.

View Article and Find Full Text PDF

The ability of bone to resist catastrophic failure is critically dependent upon the material properties of bone matrix, a composite of hydroxyapatite, collagen type I, and noncollagenous proteins. These properties include elastic modulus, hardness, and fracture toughness. Like other aspects of bone quality, matrix material properties are biologically-defined and can be disrupted in skeletal disease.

View Article and Find Full Text PDF