Publications by authors named "Adam Hage"

Cellular RNAs directly regulate the activity of an antiviral immune signaling complex.

View Article and Find Full Text PDF

SARS-CoV-2 is a highly transmissible virus that causes COVID-19 disease. Mechanisms of viral pathogenesis include excessive inflammation and viral-induced cell death, resulting in tissue damage. Here we show that the host E3-ubiquitin ligase TRIM7 acts as an inhibitor of apoptosis and SARS-CoV-2 replication via ubiquitination of the viral membrane (M) protein.

View Article and Find Full Text PDF

The unprecedented research effort associated with the emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) included several extensive proteomic studies that identified host proteins that interact with individual viral gene products. However, in most cases, the consequences of those virus-host interactions for virus replication were not experimentally pursued, which is a necessary step in determining whether the interactions represent pro- or anti-viral events. One putative interaction commonly identified in multiple studies was between the host adaptor protein complex 3 (AP-3) subunit B1 (AP3B1) and the SARS-CoV-2 envelope protein (E).

View Article and Find Full Text PDF

SARS-CoV-2 is a highly transmissible virus that causes COVID-19 disease. Mechanisms of viral pathogenesis include excessive inflammation and viral-induced cell death, resulting in tissue damage. We identified the host E3-ubiquitin ligase TRIM7 as an inhibitor of apoptosis and SARS-CoV-2 replication via ubiquitination of the viral membrane (M) protein.

View Article and Find Full Text PDF

The tick-borne encephalitis virus (TBEV) serocomplex includes several medically important flavivirus members endemic to Europe, Asia, and North America, which can induce severe neuroinvasive or viscerotropic diseases with unclear mechanisms of pathogenesis. Langat virus (LGTV) shares a high sequence identity with TBEV but exhibits lower pathogenic potential in humans and serves as a model for virus-host interactions. In this study, we demonstrated that LGTV infection inhibits the activation of gp130/JAK/STAT (Janus kinases (JAK) and signal transducer and activator of transcription (STAT)) signaling, which plays a pivotal role in numerous biological processes.

View Article and Find Full Text PDF

Nipah virus (NiV; genus: Henipavirus; family: ) naturally infects Old World fruit bats (family ) without causing overt disease. Conversely, NiV infection in humans and other mammals can be lethal. Comparing bat antiviral responses with those of humans may illuminate the mechanisms that facilitate bats' tolerance.

View Article and Find Full Text PDF

The transcription factor GLI3 is a member of the GLI family and has been shown to be regulated by canonical hedgehog (HH) signaling through smoothened (SMO). Little is known about SMO-independent regulation of GLI3. Here, we identify TLR signaling as a novel pathway regulating GLI3 expression.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers are focusing on creating antiviral treatments that target the host’s immune response rather than just the virus itself, which may help against new viruses.
  • In a recent study published in Cell Chemical Biology, Maarifi and team used a specialized assay to identify small molecules that could fight viral infections.
  • They discovered that Gilteritinib boosts interferon production and helps reduce virus replication, suggesting its potential as an antiviral agent.
View Article and Find Full Text PDF

Ebola virus (EBOV) VP35 is a polyfunctional protein involved in viral genome packaging, viral polymerase function, and host immune antagonism. The mechanisms regulating VP35's engagement in different functions are not well-understood. We previously showed that the host E3 ubiquitin ligase TRIM6 ubiquitinates VP35 at lysine 309 (K309) to facilitate virus replication.

View Article and Find Full Text PDF
Article Synopsis
  • - Type I interferons (IFN-I) play a crucial role in the body's antiviral immune response, and unanchored polyubiquitin (poly-Ub) is known to influence this process, although few interacting proteins have been identified.
  • - Researchers developed a method to isolate unanchored poly-Ub from lung tissue and discovered that the RNA helicase DHX16 acts as a potential pattern recognition receptor (PRR) essential for enhancing IFN-I responses to viruses like influenza, Zika, and SARS-CoV-2.
  • - silencing DHX16 reduced IFN-I production, which depends on the cooperation with RIG-I and unanchored K48-poly-Ub produced by the E3-U
View Article and Find Full Text PDF

Ubiquitination of proteins is a post-translational modification process with many different cellular functions, including protein stability, immune signaling, antiviral functions and virus replication. While ubiquitination of viral proteins can be used by the host as a defense mechanism by destroying the incoming pathogen, viruses have adapted to take advantage of this cellular process. The ubiquitin system can be hijacked by viruses to enhance various steps of the replication cycle and increase pathogenesis.

View Article and Find Full Text PDF

SARS-CoV-2, a novel coronavirus (CoV) that causes COVID-19, has recently emerged causing an ongoing outbreak of viral pneumonia around the world. While distinct from SARS-CoV, both group 2B CoVs share similar genome organization, origins to bat CoVs, and an arsenal of immune antagonists. In this report, we evaluate type I interferon (IFN-I) sensitivity of SARS-CoV-2 relative to the original SARS-CoV.

View Article and Find Full Text PDF

Purpose Of Review: Tripartite motif (TRIM) proteins are a large group of E3 ubiquitin ligases involved in different cellular functions. Of special interest are their roles in innate immunity, inflammation, and virus replication. We discuss novel roles of TRIM proteins during virus infections that lead to increased pathogenicity.

View Article and Find Full Text PDF

Based on genome-scale loss-of-function screens we discovered that Topoisomerase III-β (TOP3B), a human topoisomerase that acts on DNA and RNA, is required for yellow fever virus and dengue virus-2 replication. Remarkably, we found that TOP3B is required for efficient replication of all positive-sense-single stranded RNA viruses tested, including SARS-CoV-2. While there are no drugs that specifically inhibit this topoisomerase, we posit that TOP3B is an attractive anti-viral target.

View Article and Find Full Text PDF

Zika virus (ZIKV) belongs to the family Flaviviridae, and is related to other viruses that cause human diseases. Unlike other flaviviruses, ZIKV infection can cause congenital neurological disorders and replicates efficiently in reproductive tissues. Here we show that the envelope protein (E) of ZIKV is polyubiquitinated by the E3 ubiquitin ligase TRIM7 through Lys63 (K63)-linked polyubiquitination.

View Article and Find Full Text PDF

SARS-CoV-2, a novel coronavirus (CoV) that causes COVID-19, has recently emerged causing an ongoing outbreak of viral pneumonia around the world. While distinct from SARS-CoV, both group 2B CoVs share similar genome organization, origins to bat CoVs, and an arsenal of immune antagonists. In this report, we evaluate type-I interferon (IFN-I) sensitivity of SARS-CoV-2 relative to the original SARS-CoV.

View Article and Find Full Text PDF

Based on genome-scale loss-of-function screens we discovered that Topoisomerase III-ß (TOP3B), a human topoisomerase that acts on DNA and RNA, is required for yellow fever virus and dengue virus-2 replication. Remarkably, we found that TOP3B is required for efficient replication of all positive-sense-single stranded RNA viruses tested, including SARS-CoV-2. While there are no drugs that specifically inhibit this topoisomerase, we posit that TOP3B is an attractive anti-viral target.

View Article and Find Full Text PDF

Several members of the tripartite motif (TRIM) family of E3 ubiquitin ligases regulate immune pathways, including the antiviral type I interferon (IFN-I) system. Previously, we demonstrated that TRIM6 is involved in IFN-I induction and signaling. In the absence of TRIM6, optimal IFN-I signaling is reduced, allowing increased replication of interferon-sensitive viruses.

View Article and Find Full Text PDF

The innate immune system responds rapidly to protect against viral infections, but an overactive response can cause harmful damage. To avoid this, the response is tightly regulated by post-translational modifications (PTMs). The ubiquitin system represents a powerful PTM machinery that allows for the reversible linkage of ubiquitin to activate and deactivate a target's function.

View Article and Find Full Text PDF

Enteric viruses exploit bacterial components, including lipopolysaccharides (LPS) and peptidoglycan (PG), to facilitate infection in humans. Because of their origin in the bat enteric system, we wondered if severe acute respiratory syndrome coronavirus (SARS-CoV) or Middle East respiratory syndrome CoV (MERS-CoV) also use bacterial components to modulate infectivity. To test this question, we incubated CoVs with LPS and PG and evaluated infectivity, finding no change following LPS treatment.

View Article and Find Full Text PDF

Present municipal wastewater treatment technologies often require substantial energy inputs, and fail to completely remove nitrate and phosphate before discharging effluent. In contrast, using the cold-adapted oleaginous microalga sp. Dek 19 decreased levels of both these polluting ions to 0 mg/dL.

View Article and Find Full Text PDF

The innate antiviral response is integral in protecting the host against virus infection. Many proteins regulate these signaling pathways including ubiquitin enzymes. The ubiquitin-activating (E1), -conjugating (E2), and -ligating (E3) enzymes work together to link ubiquitin, a small protein, onto other ubiquitin molecules or target proteins to mediate various effector functions.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiondld8jjoo640dnt8u2622b1dnk24uog5t): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once