Background: The mechanisms by which megadose sodium ascorbate improves clinical status in experimental sepsis is unclear. We determined its effects on cerebral perfusion, oxygenation, and temperature, and plasma levels of inflammatory biomarkers, nitrates, nitrites, and ascorbate in ovine Gram-negative sepsis.
Methods: Sepsis was induced by i.
is a commensal of the human upper respiratory tract that can infect diverse host niches due, at least in part, to its ability to withstand both endogenous and host-mediated oxidative stresses. Here, we show that , a gene previously linked to iron import, is essential for manganese recruitment the HfeBCD transporter. Structural analyses show that metal binding in HfeA uses a unique mechanism that involves substantial rotation of the C-terminal lobe of the protein.
View Article and Find Full Text PDFMetal dyshomeostasis is a well-established consequence of neurodegenerative diseases and traumatic brain injury. While the significance of metals continues to be uncovered in many neurological disorders, their implication in repetitive mild traumatic brain injury remains uncharted. To address this gap, we characterized the spatial distribution of metal levels (iron, zinc, and copper) using laser ablation-inductively coupled plasma-mass spectrometry, the profile of metal-binding proteins via size exclusion chromatography-inductively coupled plasma-mass spectrometry and the expression of the major iron storing protein ferritin via western blotting.
View Article and Find Full Text PDFMetallothioneins (MTs) are crucial for metal ion homeostasis in mammalian cells. Specialized mass spectrometry methods have been developed to detect MTs in tissue extracts, though facile methods with scalable throughput are lacking. To improve analytical throughput and repeatability, we developed a standardised liquid chromatography tandem mass spectrometry (LC-MS/MS) method for robust determination of metallothionein-3 (MT3) that is amenable to microplate processing.
View Article and Find Full Text PDFGlutaminyl cyclases (QC) catalyze the formation of neurotoxic pGlu-modified amyloid-β peptides found in the brains of people with Alzheimer's disease (AD). Reports of several-fold increases in soluble QC (sQC) expression in the brain and peripheral circulation of AD individuals has prompted the development of QC inhibitors as potential AD therapeutics. There is, however, a lack of standardized quantitative data on QC expression in human tissues, precluding inter-laboratory comparison and validation.
View Article and Find Full Text PDFThe proteolytic cleavage of β-amyloid precursor protein (APP) to form the amyloid beta (Aβ) peptide is related to the pathogenesis of Alzheimer's disease (AD) because APP mutations that influence this processing either induce familial AD or mitigate the risk of AD. Yet Aβ formation itself may not be pathogenic. APP promotes neuronal iron efflux by stabilizing the cell-surface presentation of ferroportin, the only iron export channel of cells.
View Article and Find Full Text PDFMetals are critical cellular elements that are involved in a variety of cellular processes, with recent literature demonstrating that zinc, and the synaptic zinc transporter (ZnT3), are specifically involved in learning and memory and may also be key players in age-related neurodegenerative disorders such as Alzheimer's disease. Whilst the cellular content and location of metals is critical, recent data has demonstrated that the metalation state of proteins is a determinant of protein function and potential toxicity. As we have previously reported that ZnT3 knockout (KO) mice have deficits in total zinc levels at both 3 and 6 months of age, we were interested in whether there might be changes in the metalloproteomic profile in these animals.
View Article and Find Full Text PDFProteolytic cleavage of the amyloid precursor protein (APP) into the Aβ peptide has been an extensively researched mechanism for Alzheimer's disease, but the normal function of the protein is less understood. APP functions to regulate neuronal iron content by stabilizing the surface presentation of ferroportin-the only iron exporter channel of cells. The present study aims to quantify the contribution of APP to brain and peripheral iron by examining the lifetime impact on brain and liver iron levels in APP knockout mice.
View Article and Find Full Text PDFElevated iron and decreased copper levels are cardinal features of the degenerating substantia nigra pars compacta in the Parkinson's disease brain. Both of these redox-active metals, and fellow transition metals manganese and zinc, are found at high concentrations within the midbrain and participate in a range of unique biological reactions. We examined the total metal content and cellular compartmentalisation of manganese, iron, copper and zinc in the degenerating substantia nigra, disease-affected but non-degenerating fusiform gyrus, and unaffected occipital cortex in the post mortem Parkinson's disease brain compared with age-matched controls.
View Article and Find Full Text PDFThe continued use of platinum-based chemotherapeutic drugs in the clinic mandates the need for further investigation of the biological activity of structural analogues of the clinically approved complexes. Of interest are monofunctional platinum(II) complexes, which bear only one labile ligand, for which it is believed that each complex binds to DNA only once. Pyriplatin ([PtCl(NH)(py)]) and enpyriplatin ([PtCl(en)(py)]) are both monofunctional platinum(II) complexes that bear a pyridine ligand and a labile chlorido ligand, differing in their cis‑ammine and ethane-1,2-diamine (en) ligands respectively.
View Article and Find Full Text PDFPyroglutamate-modified amyloid-β (pE-Aβ) is a highly neurotoxic amyloid-β (Aβ) isoform and is enriched in the brains of individuals with Alzheimer disease compared with healthy aged controls. Pyroglutamate formation increases the rate of Aβ oligomerization and alters the interactions of Aβ with Cu(2+) and lipids; however, a link between these properties and the toxicity of pE-Aβ peptides has not been established. We report here that Aβ3pE-42 has an enhanced capacity to cause lipid peroxidation in primary cortical mouse neurons compared with the full-length isoform (Aβ(1-42)).
View Article and Find Full Text PDFReducing amyloid-β peptide (Aβ) burden at the pre-symptomatic stages of Alzheimer's disease (AD) is currently the advocated clinical strategy for treating this disease. The most developed method for targeting Aβ is the use of monoclonal antibodies including bapineuzumab, solanezumab and crenezumab. We have synthesized these antibodies and used surface plasmon resonance (SPR) and mass spectrometry to characterize and compare the ability of these antibodies to target Aβ in transgenic mouse tissue as well as human AD tissue.
View Article and Find Full Text PDFMethods Mol Biol
August 2012
There is a great interest in the role of free radicals and oxidative stress in Alzheimer's disease and for the role of transition metals in the generation of oligomers of Aβ peptides. In the literature, there are a multitude of varying methods that can be used to create soluble oligomers of Aβ, however, the processes that create these oligomers are often stochastic by nature and thus reproducibility is an issue. Here we report a simple and reproducible method for the production of radically derived dityrosine cross-linked oligomers of Aβ, through reaction with copper and ascorbic acid.
View Article and Find Full Text PDFInt J Biochem Cell Biol
December 2010
The accumulation of amyloid-beta (Aβ) peptides is believed to be a central contributor to the neurodegeneration typically seen in Alzheimer's disease (AD) brain. Aβ extracted from AD brains invariably possesses extensive truncations, yielding peptides of differing N- and C-terminal composition. Whilst Aβ is often abundant in the brains of cognitively normal elderly people, the brains of AD patients are highly enriched for N-terminally truncated Aβ bearing the pyroglutamate modification.
View Article and Find Full Text PDFPBT2 is a copper/zinc ionophore that rapidly restores cognition in mouse models of Alzheimer's disease (AD). A recent Phase IIa double-blind, randomized, placebo-controlled trial found that the 250 mg dose of PBT2 was well-tolerated, significantly lowered cerebrospinal fluid (CSF) levels of amyloid-beta42, and significantly improved executive function on a Neuro-psychological Test Battery (NTB) within 12 weeks of treatment in patients with AD. In the post-hoc analysis reported here, the cognitive, blood marker, and CSF neurochemistry outcomes from the trial were subjected to further analysis.
View Article and Find Full Text PDFTransgenic expression of human amyloid beta (A beta) peptide in body wall muscle cells of Caenorhabditis elegans has been used to better understand aspects of Alzheimer disease (AD). In human aging and AD, A beta undergoes post-translational changes including covalent modifications, truncations, and oligomerization. Amino truncated A beta is increasingly recognized as potentially contributing to AD pathogenesis.
View Article and Find Full Text PDFDecelerated degradation of beta-amyloid (Abeta) and its interaction with synaptic copper may be pathogenic in Alzheimer disease. Recently, Co(III)-cyclen tagged to an aromatic recognition motif was shown to degrade Abeta in vitro. Here, we report that apocyclen attached to selective Abeta recognition motifs (KLVFF or curcumin) can capture copper bound to Abeta and use the Cu(II) in place of Co(III) to become proteolytically active.
View Article and Find Full Text PDF