Publications by authors named "Adam Gehring"

Organogenesis is a complex process that relies on a dynamic interplay between extrinsic factors originating from the microenvironment and tissue-specific intrinsic factors. For pancreatic endocrine cells, the local niche consists of acinar and ductal cells as well as neuronal, immune, endothelial, and stromal cells. Hematopoietic cells have been detected in human pancreas as early as 6 post-conception weeks, but whether they play a role during human endocrinogenesis remains unknown.

View Article and Find Full Text PDF

Virus-specific T cells are critical to mediating viral control; however, Hepatitis B virus (HBV)-specific T cells among chronic Hepatitis B (CHB) patients are functionally exhausted. The inability to consistently measure the ex vivo functionality of HBV-specific T cells has prevented meaningful analysis during antiviral events such as HBeAg seroconversion, hepatic flares, and HBsAg loss. We optimized the traditional IFN-γ ELISpot assay to measure total ex vivo HBV-specific T cell frequencies using CHB PBMCs stimulated with HBV overlapping peptide (OLP) pools.

View Article and Find Full Text PDF
Article Synopsis
  • - Chronic hepatitis B virus (HBV) infection affects 300 million people globally, leading to dysfunction in virus-specific CD8 T cells that struggle to eliminate HBV-infected liver cells due to mechanisms that aren't fully understood.
  • - Research indicates a liver immune rheostat inhibits the activation of these CD8 T cells, particularly the CXCR6 subtype, leading to loss of their functionality, as shown by increased activity of the transcription factor cAMP-responsive element modulator (CREM) in both experimental models and chronic HBV patients.
  • - Enhanced signaling pathways related to cAMP and protein kinase A (PKA) in these T cells contribute to their dysfunction, as they establish prolonged contacts with liver cells, impairing essential activation
View Article and Find Full Text PDF

Background: Studies on chronic hepatitis B virus (HBV) infection have shown immune dysfunction involving multiple cell types, including T cells. B cells have been evaluated more recently, but in contrast to T cells, more pronounced activation of circulating B cells has been reported. To gain more insight into the activation status of B cells, we investigated gene profiles of B cells in the blood and liver of patients with chronic HBV.

View Article and Find Full Text PDF

Studies have traditionally focused on the role of T cells in chronic hepatitis B (CHB), but recent evidence supports a role for B cells. The enrichment of so-called atypical memory (AtM) B cells, which show reduced signaling and impaired differentiation, is believed to be a characteristic feature of CHB, potentially contributing to the observed dysfunctional anti-HBsAg B-cell responses. Our study, involving 62 CHB patients across clinical phases, identified AtM B cells expressing IFNLR1 and interferon-stimulated genes.

View Article and Find Full Text PDF
Article Synopsis
  • Monoclonal antibody therapy is gaining traction for treating chronic hepatitis B (HBV) and hepatitis D (HDV), focusing on developing antibodies that target hepatitis B surface antigens (anti-HBs).
  • Combining anti-HBs monoclonal antibodies with new anti-HBV drugs and immunomodulatory treatments may improve cure rates for HBV/HDV infections.
  • The review examines how antibodies protect against HBV, the necessity of antibody functions beyond neutralization, and discusses clinical trial data on the effectiveness of passive antibody therapies paired with other innovative agents.
View Article and Find Full Text PDF

Background Aims: Pegylated interferon-α (PegIFNα) is of limited utility during immunotolerant or immune active phases of chronic hepatitis B infection but is being explored as part of new cure regimens. Low/absent levels of IFNα found in some patients receiving treatment are associated with limited/no virological responses. The study aimed to determine if sera from participants inhibit IFNα activity and/or contain therapy-induced anti-IFNα antibodies.

View Article and Find Full Text PDF
Article Synopsis
  • - Aging negatively affects the adaptive immune system, leading to fewer diverse T cells and an increase in inflammatory T cell types, which are linked to chronic diseases and higher mortality rates.
  • - B cells play a significant role in the aging process of T cells by reducing naive T cells and promoting harmful T cell subsets, as shown through various experimental models and single-cell analysis.
  • - Targeting these age-related changes in T cells with CD20 monoclonal antibody treatment could help improve immune function and healthspan, with insulin receptor signaling identified as a key mechanism behind B cell effects on T cell dysfunction.
View Article and Find Full Text PDF

Diabetic kidney disease (DKD) is the main cause of chronic kidney disease (CKD) and progresses faster in males than in females. We identify sex-based differences in kidney metabolism and in the blood metabolome of male and female individuals with diabetes. Primary human proximal tubular epithelial cells (PTECs) from healthy males displayed increased mitochondrial respiration, oxidative stress, apoptosis, and greater injury when exposed to high glucose compared with PTECs from healthy females.

View Article and Find Full Text PDF

Immune-mediated liver damage is the driver of disease progression in patients with chronic hepatitis B virus (HBV) infection. Liver damage is an Ag-independent process caused by bystander activation of CD8 T cells and NK cells. How bystander lymphocyte activation is initiated in chronic hepatitis B patients remains unclear.

View Article and Find Full Text PDF

Background & Aims: Primary sclerosing cholangitis (PSC) is an immune-mediated cholestatic liver disease for which there is an unmet need to understand the cellular composition of the affected liver and how it underlies disease pathogenesis. We aimed to generate a comprehensive atlas of the PSC liver using multi-omic modalities and protein-based functional validation.

Methods: We employed single-cell and single-nucleus RNA sequencing (47,156 cells and 23,000 nuclei) and spatial transcriptomics (one sample by 10x Visium and five samples with Nanostring GeoMx DSP) to profile the cellular ecosystem in 10 PSC livers.

View Article and Find Full Text PDF

Background: There are no immunological biomarkers that predict control of chronic hepatitis B (CHB). The lack of immune biomarkers raises concerns for therapies targeting PD-1/PD-L1 because they have the potential for immune-related adverse events. Defining specific immune functions associated with control of HBV replication could identify patients likely to respond to anti-PD-1/PD-L1 therapies and achieve a durable functional cure.

View Article and Find Full Text PDF

Background & Aims: Novel therapies for chronic hepatitis B (CHB), such as RNA interference, target all viral RNAs for degradation, whereas nucleoside analogues are thought to block reverse transcription with minimal impact on viral transcripts. However, limitations in technology and sampling frequency have been obstacles to measuring actual changes in HBV transcription in the liver of patients starting therapy.

Methods: We used elective liver sampling with fine-needle aspirates (FNAs) to investigate the impact of treatment on viral replication in patients with CHB.

View Article and Find Full Text PDF

A hepatitis C virus (HCV) vaccine is urgently needed. Vaccine development has been hindered by HCV's genetic diversity, particularly within the immunodominant hypervariable region 1 (HVR1). Here, we developed a strategy to elicit broadly neutralizing antibodies to HVR1, which had previously been considered infeasible.

View Article and Find Full Text PDF

Background And Aims: HBV infection is restricted to the liver, where it drives exhaustion of virus-specific T and B cells and pathogenesis through dysregulation of intrahepatic immunity. Our understanding of liver-specific events related to viral control and liver damage has relied almost solely on animal models, and we lack useable peripheral biomarkers to quantify intrahepatic immune activation beyond cytokine measurement. Our objective was to overcome the practical obstacles of liver sampling using fine-needle aspiration and develop an optimized workflow to comprehensively compare the blood and liver compartments within patients with chronic hepatitis B using single-cell RNA sequencing.

View Article and Find Full Text PDF

Accumulation of activated immune cells results in nonspecific hepatocyte killing in chronic hepatitis B (CHB), leading to fibrosis and cirrhosis. This study aims to understand the underlying mechanisms in humans and to define whether these are driven by widespread activation or a subpopulation of immune cells. We enrolled CHB patients with active liver damage to receive antiviral therapy and performed longitudinal liver sampling using fine-needle aspiration to investigate mechanisms of CHB pathogenesis in the human liver.

View Article and Find Full Text PDF

Interferons induced early after SARS-CoV-2 infection are crucial for shaping immunity and preventing severe COVID-19. We previously demonstrated that injection of pegylated interferon-lambda accelerated viral clearance in COVID-19 patients (NCT04354259). To determine if the viral decline is mediated by enhanced immunity, we assess in vivo responses to interferon-lambda by single cell RNA sequencing and measure SARS-CoV-2-specific T cell and antibody responses between placebo and interferon-lambda-treated patients.

View Article and Find Full Text PDF

Individuals who spontaneously clear hepatitis C virus (HCV) infection have demonstrated evidence of partial protective immunity, whereas treatment-induced clearance provides little or no protection against reinfection. We aimed to investigate whether treatment of acute HCV infection with direct-acting antivirals (DAA) prevents establishment of, or reverses, T-cell exhaustion, leading to a virus-specific T-cell immune profile more similar to that seen in spontaneous clearance. The magnitude and breadth of HCV-specific T-cell responses before and after DAA or interferon-based therapy in acute or chronic HCV were compared to those of participants with spontaneous clearance of infection, using Enzyme-linked Immunospot (ELISPOT).

View Article and Find Full Text PDF

HepG2 cells reconstituted with Hepatitis B virus (HBV) entry receptor sodium taurocholate co-transporting polypeptide (NTCP) are widely used as a convenient in vitro cell culture infection model for HBV replication studies. As such, it is pertinent that HBV infectivity is maintained at steady-state levels for an accurate interpretation of in vitro data. However, variations in the HBV infection efficiency due to imbalanced NTCP expression levels in the HepG2 cell line may affect experimental results.

View Article and Find Full Text PDF

Globally, 296 million people are infected with hepatitis B virus (HBV), and approximately one million people die annually from HBV-related causes, including liver cancer. Although there is a preventative vaccine and antiviral therapies suppressing HBV replication, there is no cure. Intensive efforts are under way to develop curative HBV therapies.

View Article and Find Full Text PDF

The chr12q24.13 locus encoding OAS1-OAS3 antiviral proteins has been associated with coronavirus disease 2019 (COVID-19) susceptibility. Here, we report genetic, functional and clinical insights into this locus in relation to COVID-19 severity.

View Article and Find Full Text PDF

Background & Aims: With or without antiviral treatment, few individuals achieve sustained functional cure of chronic hepatitis B virus (HBV) infection. A better definition of what mediates functional cure is essential for improving immunotherapeutic strategies. We aimed to compare HBV-specific T cell responses in patients with different degrees of viral control.

View Article and Find Full Text PDF