Publications by authors named "Adam G West"

Article Synopsis
  • Scientists are working on using special types of stem cells called Long-term reconstituting haematopoietic stem cells (LT-HSCs) to help treat blood problems through transplants.
  • One challenge is that LT-HSCs are hard to find and don’t live long in lab conditions, but researchers have made progress in keeping them alive using special support systems.
  • They created a new game-changing environment using soft materials that help these LT-HSCs survive and even support gene editing, which could improve treatment for blood disorders!
View Article and Find Full Text PDF
Article Synopsis
  • Increases in genome size in the plant genus Schoenus are linked to larger stomata and improved water-use efficiency (WUE), suggesting a relationship between genetic makeup and physiological traits.
  • Comparative analysis between Schoenus and Tetraria shows that genome size significantly influences stomatal parameters, with larger genomes leading to larger stomata and reduced conductance.
  • The study concludes that Schoenus exhibits more conservative physiological strategies compared to Tetraria, primarily due to differences in leaf size and reliance on culm photosynthesis, highlighting how genome size affects plant function.
View Article and Find Full Text PDF

The hydraulic death hypothesis suggests that fires kill trees by damaging the plant's hydraulic continuum in addition to stem cambium. A corollary to this hypothesis is that plants that survive fires possess 'pyrohydraulic' traits that prevent heat-induced embolism formation in the xylem and aid post-fire survival. We examine whether hydraulic segmentation within stem xylem may act as such a trait.

View Article and Find Full Text PDF

Understanding climate change impacts on the Cape Floristic Region requires improved knowledge of plant physiological responses to the environment. Studies examining physiological responses of mountain fynbos have consisted of campaign-based measurements, capturing snapshots of plant water relations and photosynthesis. We examine conclusions drawn from prior studies by tracking in situ physiological responses of three species, representing dominant growth forms (proteoid, ericoid, restioid), over 2 years using miniature continuous sap flow technology, long-term observations of leaf/culm water potential and gas exchange, and xylem vulnerability to embolism.

View Article and Find Full Text PDF
Article Synopsis
  • Recent research suggests that plant root traits significantly influence the boundaries and communities of biomes, particularly in South Africa's Fynbos and Afrotemperate Forest regions.
  • The study examined two primary hypotheses: one, that plants with thin roots prevail in nutrient-poor environments; and two, that these traits, combined with fire, help maintain the distinct separation between the two biomes.
  • Key findings indicated that Fynbos plants have the thinnest roots globally and that intense competition for nitrogen, rather than phosphorus, plays a critical role in preventing Forest species from establishing in Fynbos, revealing a complex interaction between plant traits and resource availability in shaping biome boundaries.
View Article and Find Full Text PDF

Growth plasticity may allow fire-prone species to maximize their recovery rates during temporary, sporadic periods of rainfall availability in the post-fire environment. However, moisture-driven growth plasticity could be maladaptive in nutrient-limited environments that require tighter control of growth and resource use. We investigated whether a trade-off between plasticity and conservatism mediates growth responses to altered rainfall seasonality in neighbouring shrubland communities that occupy different soils.

View Article and Find Full Text PDF

Stable isotope ratios of hydrogen and oxygen (δH and δO) in tap water provide important insights into the way that people interact with and manage the hydrological cycle. Understanding how these interactions vary through space and time allows for the management of these resources to be improved, and for isotope data to be useful in other disciplines. The seasonal variation of δH and δO in tap water within South Africa was assessed to identify municipalities that are supplied by seasonally invariant sources that have long residence periods, such as groundwater, and those supplied by sources that vary seasonally in a manner consistent with evapoconcentration, such as surface water-the proposed two tap water "worlds".

View Article and Find Full Text PDF

Background: Members of the HMGN protein family modulate chromatin structure and influence epigenetic modifications. HMGN1 and HMGN2 are highly expressed during early development and in the neural stem/progenitor cells of the developing and adult brain. Here, we investigate whether HMGN proteins contribute to the chromatin plasticity and epigenetic regulation that is essential for maintaining pluripotency in stem cells.

View Article and Find Full Text PDF

Despite the diversity of branching architectures in plants, the impact of this morphological variation on hydraulic efficiency has been poorly studied. Branch junctions are commonly thought to be points of high hydraulic resistance, but adjustments in leaf area or xylem conduit abundance or dimensions could compensate for the additional hydraulic resistance of nodal junctions at the level of the entire shoot. Here we used the sexually dimorphic genus (Proteaceae) to test whether variation in branch ramification impacts shoot hydraulic efficiency.

View Article and Find Full Text PDF

Objectives: Stable isotope analysis has been used to investigate consumption of marine resources in a variety of terrestrial mammals, including humans, but not yet in extant nonhuman primates. We sought to test the efficacy of stable isotope analysis as a tool for such studies by comparing isotope- and observation-based estimates of marine food consumption by a troop of noncommensal, free-ranging chacma baboons.

Materials And Methods: We determined δ C and δ N values of baboon hair (n = 9) and fecal samples (n = 144), and principal food items (n = 362).

View Article and Find Full Text PDF

In the Anthropocene, alien species are no longer the only category of biological organism establishing and rapidly spreading beyond historical boundaries. We review evidence showing that invasions by native species are a global phenomenon and present case studies from Southern Africa, and elsewhere, that reveal how climate-mediated expansions of native plants into adjacent communities can emulate the functional and structural changes associated with invasions by alien plant species. We conclude that integrating native invasions into ecological practice and theory will improve mechanistic models and better inform policy and adaptive ecological management in the 21st century.

View Article and Find Full Text PDF

Increases in woody plant cover in savanna grassland environments have been reported on globally for over 50 years and are generally perceived as a threat to rangeland productivity and biodiversity. Despite this, few attempts have been made to estimate the extent of woodland increase at a national scale, principally due to technical constraints such as availability of appropriate remote sensing products. In this study, we aimed to measure the extent to which woodlands have replaced grasslands in South Africa's grassy biomes.

View Article and Find Full Text PDF

Surface winds have declined in many regions of the world over the past few decades. These trends are referred to as global stilling and have recently been observed in the Western Cape Province of South Africa. The potential consequences of such changes on ecosystem function and productivity are a particular concern for the highly diverse and endemic local flora, largely associated with the fynbos biome.

View Article and Find Full Text PDF

Recent work suggests that hydraulic mechanisms, rather than cambium necrosis, may account for rapid post-fire tree mortality. We experimentally tested for xylem cavitation, as a result of exposure to high-vapour-deficit (D) heat plumes, and permanent xylem deformation, as a result of thermal softening of lignin, in two tree species differing in fire tolerance. We measured percentage loss of conductance (PLC) in distal branches that had been exposed to high-D heat plumes or immersed in hot water baths (high temperature, but not D).

View Article and Find Full Text PDF

Attempts to understand mechanisms underlying plant mortality during drought have led to the emergence of a hydraulic framework describing distinct hydraulic strategies among coexisting species. This framework distinguishes species that rapidly decrease stomatal conductance (gs), thereby maintaining high water potential (Px; isohydric), from those species that maintain relatively high gs at low Px, thereby maintaining carbon assimilation, albeit at the cost of loss of hydraulic conductivity (anisohydric). This framework is yet to be tested in biodiverse communities, potentially due to a lack of standardized reference values upon which hydraulic strategies can be defined.

View Article and Find Full Text PDF

Many species have the ability to resprout vegetatively after a substantial loss of biomass induced by environmental stress, including drought. Many of the regions characterised by ecosystems where resprouting is common are projected to experience more frequent and intense drought during the 21st Century. However, in assessments of ecosystem response to drought disturbance there has been scant consideration of the resilience and post-drought recovery of resprouting species.

View Article and Find Full Text PDF

Cycads in South Africa are facing an extinction crisis due to the illegal extraction of plants from the wild. Proving wild origin of suspect ex situ cycads to the satisfaction of a court of law is difficult, limiting law enforcement efforts. We investigated the feasibility of using multiple stable isotopes to identify specimens removed from the wild.

View Article and Find Full Text PDF

TAL1 is an important regulator of hematopoiesis and its expression is tightly controlled despite complexities in its genomic organization. It is frequently misregulated in T-cell acute lymphoblastic leukemia (T-ALL), often due to deletions between TAL1 and the neighboring STIL gene. To better understand the events that lead to TAL1 expression in hematopoiesis and in T-ALL, we studied looping interactions at the TAL1 locus.

View Article and Find Full Text PDF

There has been limited application of sapflow technology to small-stemmed species and across co-existing functional types, restricting its use in diverse floras such as the Mediterranean-type shrubland in South Africa. Our main objective was to test whether sapflow may provide an alternative to traditional gas-exchange measurements, which would permit comparative evaluation of transpiration at a previously unattained temporal resolution. We tested miniature external heat ratio method (HRM) sapflow gauges on three co-occurring functional types with contrasting stem or culm anatomies and examined the relationship between sapflow and shoot- and leaf-level water loss in both a controlled and field environment.

View Article and Find Full Text PDF

Introduction: In recent years much progress has been made in the development of tools for systems biology to study the levels of mRNA and protein, and their interactions within cells. However, few multiplexed methodologies are available to study cell signalling directly at the transcription factor level.

Methods: Here we describe a sensitive, plasmid-based RNA reporter methodology to study transcription factor activation in mammalian cells, and apply this technology to profiling 60 transcription factors in parallel.

View Article and Find Full Text PDF

The closely linked human IL-3 and GM-CSF genes are tightly regulated and are expressed in activated T cells and mast cells. In this study, we used transgenic mice to study the developmental regulation of this locus and to identify DNA elements required for its correct activity in vivo. Because these two genes are separated by a CTCF-dependent insulator, and the GM-CSF gene is regulated primarily by its own upstream enhancer, the main objective in this study was to identify regions of the locus required for correct IL-3 gene expression.

View Article and Find Full Text PDF

The nuclear genomes of vertebrates show a highly organized program of DNA replication where GC-rich isochores are replicated early in S-phase, while AT-rich isochores are late replicating. GC-rich regions are gene dense and are enriched for active transcription, suggesting a connection between gene regulation and replication timing. Insulator elements can organize independent domains of gene transcription and are suitable candidates for being key regulators of replication timing.

View Article and Find Full Text PDF

Epigenomic profiling has revealed that substantial portions of genomes in higher eukaryotes are organized into extensive domains of transcriptionally repressive chromatin. The boundaries of repressive chromatin domains can be fixed by DNA elements known as barrier insulators, to both shield neighboring gene expression and to maintain the integrity of chromosomal silencing. Here, we examine the current progress in identifying vertebrate barrier elements and their binding factors.

View Article and Find Full Text PDF

Genomic maps of chromatin modifications have provided evidence for the partitioning of genomes into domains of distinct chromatin states, which assist coordinated gene regulation. The maintenance of chromatin domain integrity can require the setting of boundaries. The HS4 insulator element marks the 3' boundary of a heterochromatin region located upstream of the chicken β-globin gene cluster.

View Article and Find Full Text PDF