Publications by authors named "Adam G Jones"

Transcriptome analysis has become a central tool in evolutionary and functional genomics. However, variation among biological samples and analysis techniques can greatly influence results, potentially compromising insights into the phenomenon under study. Here, we evaluate differences in the brain transcriptome between female and male Gulf pipefish (Syngnathus scovelli).

View Article and Find Full Text PDF

The Gulf pipefish has emerged as an important species for studying sexual selection, development, and physiology. Comparative evolutionary genomics research involving fishes from Syngnathidae depends on having a high-quality genome assembly and annotation. However, the first genome assembled using short-read sequences and a smaller RNA-sequence dataset has limited contiguity and a relatively poor annotation.

View Article and Find Full Text PDF

The aesthetic preferences of potential mates have driven the evolution of a baffling diversity of elaborate ornaments. Which fitness benefit-if any-choosers gain from expressing such preferences is controversial, however. Here, we simulate the evolution of preferences for multiple ornament types (e.

View Article and Find Full Text PDF

In many animals, sperm competition and sexual conflict are thought to drive the rapid evolution of male-specific genes, especially those expressed in the testes. A potential exception occurs in the male pregnant pipefishes, where females transfer eggs to the males, eliminating testes from participating in these processes. Here, we show that testis-related genes differ dramatically in their rates of molecular evolution and expression patterns in pipefishes and seahorses (Syngnathidae) compared to other fish.

View Article and Find Full Text PDF

Why do males typically compete more intensely for mating opportunities than do females and how does this relate to sex differences in gamete size? A new study provides a formal evolutionary link between gamete size dimorphism and ‘Bateman gradients’, which describe how much individuals of each sex benefit from additional matings.

View Article and Find Full Text PDF

In the males of many vertebrate species, sexual selection has led to the evolution of sexually dimorphic traits, which often are developmentally controlled by androgen signaling involving androgen response elements (AREs). Evolutionary changes in the number and genomic locations of AREs can modify patterns of receptor regulation and potentially alter gene expression. Here, we use recently sequenced primate genomes to evaluate the hypothesis that the strength of sexual selection is related to the genome-wide number of AREs in a diversifying lineage.

View Article and Find Full Text PDF

Ecologists and evolutionary biologists are well aware that natural and sexual selection do not operate on traits in isolation, but instead act on combinations of traits. This long-recognized and pervasive phenomenon is known as multivariate selection, or-in the particular case where it favours correlations between interacting traits-correlational selection. Despite broad acknowledgement of correlational selection, the relevant theory has often been overlooked in genomic research.

View Article and Find Full Text PDF

How organisms adapt to the novel challenges imposed by the colonization of a new habitat has long been a central question in evolutionary biology. When multiple populations of the same species independently adapt to similar environmental challenges, the question becomes whether the populations have arrived at their adaptations through the same genetic mechanisms. In recent years, genetic techniques have been used to tackle these questions by investigating the genome-level changes underlying local adaptation.

View Article and Find Full Text PDF

The consequences of natural selection can be understood from a purely statistical perspective. In contrast, an explicitly causal approach is required to understand why trait values covary with fitness. In particular, key evolutionary constructs, such as sexual selection, fecundity selection, and so on, are best understood as selection via particular fitness components.

View Article and Find Full Text PDF

Sexual dimorphism often results from hormonally regulated trait differences between the sexes. In sex-role-reversed vertebrates, females often have ornaments used in mating competition that are expected to be under hormonal control. Males of the sex-role-reversed Gulf pipefish (Syngnathus scovelli) develop female-typical traits when they are exposed to estrogens.

View Article and Find Full Text PDF

The bizarre elaboration of sexually selected traits such as the peacock's tail was a puzzle to Charles Darwin and his 19th century followers. Ronald A. Fisher crafted an ingenious solution in the 1930s, positing that female preferences would become genetically correlated with preferred traits due to nonrandom mating.

View Article and Find Full Text PDF

Males and females are defined by the relative size of their gametes (anisogamy), but secondary sexual dimorphism in fertilization, parental investment and mating competition is widespread and often remarkably stable over evolutionary timescales. Recent theory has clarified the causal connections between anisogamy and the most prevalent differences between the sexes, but deviations from these patterns remain poorly understood. Here, we study how sex differences in parental investment and mating competition coevolve with parental care specialization.

View Article and Find Full Text PDF

Oestrogen response elements (EREs) are specific DNA sequences to which ligand-bound oestrogen receptors (ERs) physically bind, allowing them to act as transcription factors for target genes. Locating EREs and ER responsive regions is therefore a potentially important component of the study of oestrogen-regulated pathways. Here, we report the development of a novel software tool, erefinder, which conducts a genome-wide, sliding-window analysis of oestrogen receptor binding affinity.

View Article and Find Full Text PDF

With the advent of next-generation sequencing approaches, the search for individual loci underlying local adaptation has become a major enterprise in evolutionary biology. One promising method to identify such loci is to examine genome-wide patterns of differentiation, using an FST-outlier approach. The effects of pleiotropy and epistasis on this approach are not yet known.

View Article and Find Full Text PDF

Parentage analysis is a cornerstone of molecular ecology that has delivered fundamental insights into behaviour, ecology and evolution. Microsatellite markers have long been the king of parentage, their hypervariable nature conferring sufficient power to correctly assign offspring to parents. However, microsatellite markers have seen a sharp decline in use with the rise of next-generation sequencing technologies, especially in the study of population genetics and local adaptation.

View Article and Find Full Text PDF

Genetic variation plays a fundamental role in all models of evolution. For phenotypes composed of multiple quantitative traits, genetic variation is best quantified as additive genetic variances and covariances, as these values determine the rate and trajectory of evolution. Additive genetic variances and covariances are often summarized conveniently in the G-matrix, which has additive genetic variances for each trait on the diagonal and additive genetic covariances as its off-diagonal elements.

View Article and Find Full Text PDF

The trade-offs of using single-digest vs. double-digest restriction site-associated DNA sequencing (RAD-seq) protocols have been widely discussed. However, no direct empirical comparisons of the two methods have been conducted.

View Article and Find Full Text PDF

The FST-heterozygosity outlier approach has been a popular method for identifying loci under balancing and positive selection since Beaumont and Nichols first proposed it in 1996 and recommended its use for studies sampling a large number of independent populations (at least 10). Since then, their program FDIST2 and a user-friendly program optimized for large datasets, LOSITAN, have been used widely in the population genetics literature, often without the requisite number of samples. We observed empirical datasets whose distributions could not be reconciled with the confidence intervals generated by the null coalescent island model.

View Article and Find Full Text PDF

While an understanding of evolutionary processes in shifting environments is vital in the context of rapid ecological change, one of the most potent selective forces, sexual selection, remains curiously unexplored. Variation in sexual selection across a species range, especially across a gradient of temperature regimes, has the potential to provide a window into the possible impacts of climate change on the evolution of mating patterns. Here, we investigated some of the links between temperature and indicators of sexual selection, using a cold-water pipefish as model.

View Article and Find Full Text PDF

A major goal of evolutionary biology is to identify the genome-level targets of natural and sexual selection. With the advent of next-generation sequencing, whole-genome selection components analysis provides a promising avenue in the search for loci affected by selection in nature. Here, we implement a genome-wide selection components analysis in the sex role reversed Gulf pipefish, Syngnathus scovelli.

View Article and Find Full Text PDF

A major goal of molecular ecology is to identify the causes of genetic and phenotypic differentiation among populations. Population genomics is suitably poised to tackle these key questions by diagnosing the evolutionary mechanisms driving divergence in nature. Here, we set out to investigate the evolutionary processes underlying population differentiation in the Gulf pipefish, Syngnathus scovelli.

View Article and Find Full Text PDF

Isolated populations provide special opportunities to study local adaptation and incipient speciation. In some cases, however, morphological evolution can obscure the taxonomic status of recently founded populations. Here, we use molecular markers to show that an anchialine-lake-restricted population of seahorses, originally identified as Hippocampus reidi, appears on the basis of DNA data to be Hippocampus erectus We collected seahorses from Sweetings Pond, on Eleuthera Island, Bahamas, during the summer of 2014.

View Article and Find Full Text PDF

Species exhibiting sex-role reversal provide an unusual perspective on the evolution of sex roles and sex differences. However, the proximate effects of sex-role reversal are largely unknown. Endocrine disruptors provide an experimental mechanism to address hormonal regulation of sexually dimorphic gene expression in sex-role-reversed taxa.

View Article and Find Full Text PDF

Sexual selection must affect the genome for it to have an evolutionary impact, yet signatures of selection remain elusive. Here we use an individual-based model to investigate the utility of genome-wide selection components analysis, which compares allele frequencies of individuals at different life history stages within a single population to detect selection without requiring a priori knowledge of traits under selection. We modeled a diploid, sexually reproducing population and introduced strong mate choice on a quantitative trait to simulate sexual selection.

View Article and Find Full Text PDF

Syngnathid fishes (pipefishes, seahorses and seadragons) are characterized by a unique mode of paternal care in which embryos develop on or in the male's body, often within a structure known as a brood pouch. Evidence suggests that this pouch plays a role in mediating postcopulatory sexual selection and that males have some control over the events occurring within the pouch during the pregnancy. These observations lead to the prediction that males should invest differently in broods depending on the availability of food.

View Article and Find Full Text PDF