We report an experimental study on transmission of orbital angular momentum mode in antiresonant fibers generated with a dedicated all-fiber optical vortex phase mask. The vortex generator can convert Gaussian beam into vortex beams with topological charge l = 1. Generated vortex beam is directly butt-coupled into the antiresonant fiber and propagates over distance of 150 cm.
View Article and Find Full Text PDFWe study an optical device designed for converting the polarized Gaussian beam into an optical vortex of tunable polarization. The proposed device comprised a set of three specially prepared nematic liquid crystal cells and a nano-spherical phase plate fabricated from two types of glass nanotubes. This device generates a high-quality optical vortex possessing one of the multiple polarization states from the uniformly polarized input Gaussian beam.
View Article and Find Full Text PDFEfficient collection of photoluminescence arising from spin dynamics of nitrogen vacancy (NV) centers in diamond is important for practical applications involving precise magnetic field or temperature mapping. These goals may be realized by the integration of nanodiamond particles with optical fibers and volumetric doping of the particles alongside the fiber core. That approach combines the advantages of robust axial fixation of NV diamonds with a direct spatial overlap of their fluorescence with the guided mode of the fiber.
View Article and Find Full Text PDFThe generation of a two-octave supercontinuum from the visible to mid-infrared (700-2800 nm) in a non-silica graded-index multimode fiber is reported. The fiber design is based on a nanostructured core comprised of two types of drawn lead-bismuth-gallate glass rods with different refractive indices. This yields an effective parabolic index profile and ten times increased nonlinearity when compared to silica fibers.
View Article and Find Full Text PDFThe development of gradient index free-form micro-optic components dedicated to the mid-infrared range is challenging due to the lack of appropriate technology. We propose a method for developing gradient index components for broadband infrared range beyond the transmission window of silicate glass based on nanostructurization using a stack-and-draw fiber drawing technique. A proof-of-concept microlens is developed and verified experimentally in the wavelength range 1.
View Article and Find Full Text PDFWe report the development of a silica glass single-mode polarization-maintaining fiber with birefringence induced by artificial anisotropic glass in the circular core without any external stress zones or structured cladding. The fiber core is composed of silica and germanium-doped silica nanorods ordered in submicrometer interleaved layers. The fiber has a measured cut-off wavelength at 1113 nm, phase birefringence of 0.
View Article and Find Full Text PDFA nanostructured core silica fiber with active and photosensitive areas implemented within the fiber core is demonstrated. The photosensitivity, active and passive properties of the fiber can be independently shaped with this new approach. We show that discrete local doping with active ions in form of nanorods allow to obtain effective laser action as in case of continuous distribution of the ions in the core.
View Article and Find Full Text PDFWe study the theoretical formation of optical vortices using a nanostructured gradient index phase mask. We consider structures composed of spatially distributed thermally matched glass nanorods with high and low refractive indices. Influence of effective refractive profile distribution, refractive index contrast of component glasses and charge value on the quality of generation of vortices are discussed.
View Article and Find Full Text PDFWe present experimental results on fiber Bragg gratings inscription in nanostructured graded-index (nGRIN) and multi-step index (MSIN) optical fibers, both having non-uniform radial distribution of GeO dopant in the fiber cores. In particular, the positive role of radial shaping the GeO distribution in the fiber core on grating reflection efficiency is reported. We postulate that an appropriate spatial distribution of the germanium concentration that matches the fundamental mode profile improves grating spectral response due to more efficient grating-mode interaction, as compared with uniformly doped step-index optical fibers with the same overall doping level.
View Article and Find Full Text PDFNanostructured GRIN components are optical elements which can have an arbitrary refractive index profile while retaining flat-parallel entry and exit facets. A method of their fabrication requires assembly of large quantities of glass rods in order to satisfy subwavelength requirement of the effective medium theory. In this paper, we present a development of gradient index microlenses using a combination of methods: nanostructurization of the preform and controlled diffusion process during lens drawing on a fiber drawing tower.
View Article and Find Full Text PDFWe report on efficient inscription of fiber Bragg gratings (FBGs) in a new type of single mode fiber with nanostructured core and with an effective parabolic graded index profile, using the standard phase mask method and a 248 nm pulsed laser. A nanostructured core allows to obtain high concentration of GeO in subwavelength glass rods and simultaneously to maintain low average germanium dopant level of silica similarly to standard single mode fibers. We showed that in a nanostructured core fiber, a factor of 3 better efficiency in gratings inscription was achieved, although the fiber has 20% lower average concentration of GeO with respect to SMF-28.
View Article and Find Full Text PDFThe paper presents a new approach to developing exposed-core fibers. We designed a new asymmetric structure of suspended core fibers with series of additional air holes in the cladding. Using the standard wet etching method we removed a part of glass, demonstrating that the method allows to open a selected air hole surrounding the suspended core.
View Article and Find Full Text PDFThe ability to shape the index profile of optical fibers holds the key to fully flexible engineering of their optical properties and future applications. We present a new approach for the development of a graded index fused silica fiber based on core nanostructurization. A graded index core is obtained by means of distribution of two types of subwavelength glass rods.
View Article and Find Full Text PDFWe present both a theoretical and an experimental study of a novel compact lensed fiber system utilizing a nanostructured GRIN lens. The lens can be integrated with an optical fiber, which ensures a unique and efficient focusing in any high index medium, such as a liquid. We use the effective medium approach to design lenses with arbitrary refractive index.
View Article and Find Full Text PDFWe present a novel method for the development of a micro lenslets hexagonal array. We use gradient index (GRIN) micro lenses where the variation of the refraction index is achieved with a structure of nanorods made of 2 types of glasses. To develop the GRIN micro lens array, we used a modified stack-and-draw technology which was originally applied for the fabrication of photonic crystal fibers.
View Article and Find Full Text PDFWe propose a new approach to developing of graded-index chalcogenide fibers. Since chalcogenide glasses are incompatible with current vapor deposition techniques, the arbitrary refractive index gradient is obtained by means of core nanostructurization by the effective medium approach. We study the influence of graded-index core profile and the core diameter on the fiber dispersion characteristics.
View Article and Find Full Text PDFWe present a novel method for the development of diffractive optical elements (DOEs). Unlike standard surface relief DOEs, the phase shift is introduced through a refractive index variation achieved by using different types of glass. For the fabrication of DOEs we use a modified stack-and-draw technique, originally developed for the fabrication of photonic crystal fibers, resulting in a completely flat element that is easy to integrate with other optical components.
View Article and Find Full Text PDFWe demonstrate the feasibility of the development of a gradient-index elliptical microlens with a size of 75×125 μm using nanostructured glass technology. The gradient index is obtained by means of a discrete internal structure composed of two glasses with feature sizes much smaller than the wavelength of the incident light. A modified photonic crystal fiber-drawing technique is used for the lens fabrication.
View Article and Find Full Text PDFWe report the design and fabrication of nanostructured gradient index microaxicons suitable for integration with optical fibers. A structure with the effective refractive index decreasing linearly from the center to the edges (i.e.
View Article and Find Full Text PDFIn this paper we report on the development and optical properties of nanostructured gradient index microlenses with good chromatic behavior. We introduce a new fabrication concept for the development of large diameter nanostructured gradient index microlenses based on quantized gradient index profiles and the use of nanostructured meta-rods. We show a dependence of the quality of performance on the number of refractive index levels and the lens diameter.
View Article and Find Full Text PDF