Publications by authors named "Adam Fellows"

Article Synopsis
  • ARF6, a GTPase linked to cancer metastasis, is activated in lung endothelial cells during pulmonary arterial hypertension (PAH) and influences several key biological pathways.
  • Proteomic analysis of human pulmonary artery endothelial cells revealed that active ARF6 is associated with increased expression of hypoxia-inducible factor (HIF-2), essential for PAH, while showing lesser impact on HIF-1.
  • A novel ARF6 inhibitor, chlortetracycline (CTC), demonstrated potential in reducing HIF-2 activation and mitigating symptoms of PAH, indicating a new therapeutic approach that may target this pathway for better management of the disease.
View Article and Find Full Text PDF

Pulmonary arterial hypertension (PAH) is an unmet clinical need. The lack of models of human disease is a key obstacle to drug development. We present a biomimetic model of pulmonary arterial endothelial-smooth muscle cell interactions in PAH, combining natural and induced bone morphogenetic protein receptor 2 (BMPR2) dysfunction with hypoxia to induce smooth muscle activation and proliferation, which is responsive to drug treatment.

View Article and Find Full Text PDF

Aortic smooth muscle cells (SMCs) have an intrinsic role in regulating vessel homeostasis and pathological remodelling. In two-dimensional (2D) cell culture formats, however, SMCs are not embedded in their physiological extracellular matrix (ECM) environment. To overcome the limitations of conventional 2D SMC cultures, we established a 3D model of engineered vascular smooth muscle cell tissues (EVTs).

View Article and Find Full Text PDF

Pulmonary arterial hypertension is a rare but deadly disease with a complex pathogenesis. Recent evidence demonstrates that Krüppel-like factors, a diverse family of transcription factors, are involved in several key disease processes such as the phenotypic transition of endothelial cells and smooth muscle cells. Importantly, manipulation of certain Krüppel-like factors enables protection or attenuation against pulmonary arterial hypertension in both animal models and preliminary human studies.

View Article and Find Full Text PDF

Objective: Marfan syndrome (MFS) is caused by mutations in FBN1 (fibrillin-1), an extracellular matrix (ECM) component, which is modified post-translationally by glycosylation. This study aimed to characterize the glycoproteome of the aortic ECM from patients with MFS and relate it to aortopathy. Approach and Results: ECM extracts of aneurysmal ascending aortic tissue from patients with and without MFS were enriched for glycopeptides.

View Article and Find Full Text PDF

Objective: Vascular smooth muscle cell (VSMC) apoptosis accelerates atherosclerosis and promotes breakdown of the extracellular matrix, but the mechanistic links between these 2 processes are unknown. The forkhead protein FOXO3a (forkhead transcription factor O subfamily member 3a) is activated in human atherosclerosis and induces a range of proapoptotic and other transcriptional targets. We, therefore, determined the mechanisms and consequences of FOXO3a activation in atherosclerosis and arterial remodeling after injury.

View Article and Find Full Text PDF