Publications by authors named "Adam F Lee"

Cleavage of lignin ether bonds transfer hydrogenolysis is a promising route to valorize lignin, thus processes that use mild reaction conditions and exploit renewable hydrogen donor solvents (rather than molecular hydrogen) are economically advantageous. Herein we demonstrate the efficient catalytic transfer hydrogenolysis and tandem decarbonylation of lignin model compounds possessing aromatic ether bonds (α-O-4, β-O-4 and 4-O-5 linkages), over transition metal-modified Pd hydrotalcite catalysts with ethanol as the hydrogen donor and solvent. Quantitative conversions and yields were attained for all model compounds, except for 4-O-5 models, which possess inherently strong sp C-O bonds.

View Article and Find Full Text PDF

5-(hydroxymethyl)furfural (HMF) is a key biomass derived platform chemical used to produce fuel precursors or additives and value-added chemicals, synthesised by the cascade isomerisation of glucose and subsequent dehydration of reactively formed fructose to HMF over Lewis and Bronsted acid catalysts, respectively. Zirconia is a promising catalyst for such reactions; however, the impact of acid properties of different zirconia phases is poorly understood. In this work, we unravel the role of the zirconia crystalline phase in glucose isomerisation and fructose dehydration to HMF.

View Article and Find Full Text PDF

Multifunctional heterogeneous catalysts are an effective strategy to drive chemical cascades, with attendant time, resource and cost efficiencies by eliminating unit operations arising in normal multistep processes. Despite advances in the design of such catalysts, the fabrication of proximate, chemically antagonistic active sites remains a challenge for inorganic materials science. Hydrogen-bonded organocatalysts offer new opportunities for the molecular level design of multifunctional structures capable of stabilising antagonistic active sites.

View Article and Find Full Text PDF

Metal organic frameworks (MOFs) are attractive materials to generate multifunctional catalysts for the electrocatalytic reduction of CO to hydrocarbons. Here we report the synthesis of Cu and Zn modified Al-fumarate (Al-fum) MOFs, in which Zn promotes the selective reduction of CO to CO and Cu promotes CO reduction to oxygenates and hydrocarbons in an electrocatalytic cascade. Cu and Zn nanoparticles (NPs) were introduced to the Al-fum MOF by a double solvent method to promote in-pore metal deposition, and the resulting reduced Cu-Zn@Al-fum drop-cast on a hydrophobic gas diffusion electrode for electrochemical study.

View Article and Find Full Text PDF

Efficient deoxygenation of lignin-derived bio-oils is central to their adoption as precursors to sustainable liquid fuels in place of current fossil resources. In-situ catalytic transfer hydrogenation (CTH), using isopropanol and formic acid as solvent and in-situ hydrogen sources, was demonstrated over metal-doped and promoted MCM-41 for the depolymerization of oxygen-rich (35.85 wt%) lignin from Chinese fir sawdust (termed O-lignin).

View Article and Find Full Text PDF

Phosphor-containing white light-emitting diodes (LEDs) with low color-correlated temperatures (CCTs) and high color rendering indexes (CRIs) are highly desirable for energy-efficient and environmentally friendly solid-state light sources. Here, we report a new and efficient blue light-excited, green-emitting Ce-activated CaYZrScAlO phosphor, which underpins the fabrication of high-color quality and full-visible-spectrum warm-white LED devices with ultrahigh CRI values (Ra > 96 and R9 > 96). A family of CaYZrScAlO:Ce phosphors with different Ce dopant concentrations were prepared by high-temperature solid-state synthesis.

View Article and Find Full Text PDF

Perovskite oxides are regarded as promising electrocatalysts for water splitting due to their cost-effectiveness, high efficiency and durability in the oxygen evolution reaction (OER). Despite these advantages, a fundamental understanding of how critical structural parameters of perovskite electrocatalysts influence their activity and stability is lacking. Here, we investigate the impact of structural defects on OER performance for representative LaNiO perovskite electrocatalysts.

View Article and Find Full Text PDF

Solid acid catalyzed cracking of waste oil-derived fatty acids is an attractive route to hydrocarbon fuels. HZSM-5 is an effective acid catalyst for fatty acid cracking; however, its microporous nature is susceptible to rapid deactivation by coking. We report the synthesis and application of hierarchical HZSM-5 (h-HZSM-5) in which silanization of pre-crystallized zeolite seeds is employed to introduce mesoporosity during the aggregation of growing crystallites.

View Article and Find Full Text PDF

Ethene is a commodity chemical of great importance for manufacturing diverse consumer products, whose synthesis via crude oil steam cracking is one of the most energy-intensive processes in the petrochemical industry. Oxidative dehydrogenation (ODH) of ethane is an attractive, low energy, alternative route to ethene which could reduce the carbon footprint for its production, however, the commercial implementation of ODH requires catalysts with improved selectivity. This review critically assesses recent developments in catalytic technologies for ethane ODH, and discusses how insight into proposed mechanisms from computational studies, and CO assisted ethane dehydrogenation (CO-DHE), provide opportunities for economically viable processes to meet growing demands for ethene while reducing carbon emissions.

View Article and Find Full Text PDF

Invited for this month's cover is the group of Karen Wilson and Adam Lee at RMIT University. The image shows platinum nanoparticles and Brønsted acid sites working cooperatively to catalyse the efficient hydrodeoxygenation of phenolic lignin residues to produce sustainable biofuels. The Full Paper itself is available at 10.

View Article and Find Full Text PDF

Background: Platform chemicals are essential to industrial processes. Used as starting materials for the manufacture of diverse products, their cheap availability and efficient sourcing are an industrial requirement. Increasing concerns about the depletion of natural resources and growing environmental consciousness have led to a focus on the economics and ecological viability of bio-based platform chemical production.

View Article and Find Full Text PDF

Hydrodeoxygenation (HDO) is a promising technology to upgrade fast pyrolysis bio-oils but it requires active and selective catalysts. Here we explore the synergy between the metal and acid sites in the HDO of anisole, a model pyrolysis bio-oil compound, over mono- and bi-functional Pt/(Al)-SBA-15 catalysts. Ring hydrogenation of anisole to methoxycyclohexane occurs over metal sites and is structure sensitive; it is favored over small (4 nm) Pt nanoparticles, which confer a turnover frequency (TOF) of approximately 2000 h and a methoxycyclohexane selectivity of approximately 90 % at 200 °C and 20 bar H ; in contrast, the formation of benzene and the desired cyclohexane product appears to be structure insensitive.

View Article and Find Full Text PDF

Single-atom catalysts (SACs) have demonstrated superior catalytic performance in numerous heterogeneous reactions. However, producing thermally stable SACs, especially in a simple and scalable way, remains a formidable challenge. Here, we report the synthesis of Ru SACs from commercial RuO powders by physical mixing of sub-micron RuO aggregates with a MgAlFeO spinel.

View Article and Find Full Text PDF

Dry reforming of methane (DRM) is an attractive route to utilize CO as a chemical feedstock with which to convert CH into valuable syngas and simultaneously mitigate both greenhouse gases. Ni-based DRM catalysts are promising due to their high activity and low cost, but suffer from poor stability due to coke formation which has hindered their commercialization. Herein, we report that atomically dispersed Ni single atoms, stabilized by interaction with Ce-doped hydroxyapatite, are highly active and coke-resistant catalytic sites for DRM.

View Article and Find Full Text PDF

Catalytic decarbonylation is an underexplored strategy for deoxygenation of biomass-derived aldehydes owing to a lack of low-cost and robust heterogeneous catalysts that can operate in benign solvents. A family of Pd-functionalized hydrotalcites (Pd-HTs) were synthesized, characterized, and applied to the decarbonylation of furfural, 5-hydroxymethylfurfural (HMF), and aromatic and aliphatic aldehydes under microwave conditions. This catalytic system delivered enhanced decarbonylation yields and turnover frequencies, even at a low Pd loading (0.

View Article and Find Full Text PDF

Surface-supported isolated atoms in single-atom catalysts (SACs) are usually stabilized by diverse defects. The fabrication of high-metal-loading and thermally stable SACs remains a formidable challenge due to the difficulty of creating high densities of underpinning stable defects. Here we report that isolated Pt atoms can be stabilized through a strong covalent metal-support interaction (CMSI) that is not associated with support defects, yielding a high-loading and thermally stable SAC by trapping either the already deposited Pt atoms or the PtO units vaporized from nanoparticles during high-temperature calcination.

View Article and Find Full Text PDF

The catalytic deoxygenation of bio-based feedstocks to fuels and chemicals presents new challenges to the catalytic scientist, with many transformations either performed in or liberating water as a byproduct during reaction. The design of catalysts with tunable hydrophobicity to aid product and reactant adsorption or desorption, respectively, is vital for processes including (trans)esterification and condensation reactions employed in sustainable biodiesel production and bio-oil upgrading processes. Increasing surface hydrophobicity of catalyst materials offers a means to displace water from the catalyst active site, and minimizes potential deactivation or hydrolysis side reactions.

View Article and Find Full Text PDF

A heterogeneous catalyst system, employing Au nanoparticles (NPs) and Li-Al (1 : 2) layered double hydroxide (LDH) as support, showed excellent activity in aerobic oxidation of the benzylic alcohol group in β-O-4 linked lignin model dimers to the corresponding carbonyl products using molecular oxygen under atmospheric pressure. The synergistic effect between Au NPs and the basic Li-Al LDH support induces further reaction of the oxidized model compounds, facilitating facile cleavage of the β-O-4 linkage. Extension to oxidation of γ-valerolactone (GVL) extracted lignin and kraft lignin using Au/Li-Al LDH under similar conditions produced a range of aromatic monomers in high yield.

View Article and Find Full Text PDF

Healthcare-associated infections and the rise of drug-resistant bacteria pose significant challenges to existing antibiotic therapies. Silver nanocomposites are a promising solution to the current crisis, however their therapeutic application requires improved understanding of underpinning structure-function relationships. A family of chemically and structurally modified mesoporous SBA-15 silicas were synthesized as porous host matrices to tune the physicochemical properties of silver nanoparticles.

View Article and Find Full Text PDF

Furfural is a key bioderived platform chemical whose reactivity under hydrogen atmospheres affords diverse chemical intermediates. Here, temperature-programmed reaction spectrometry and complementary scanning tunneling microscopy (STM) are employed to investigate furfural adsorption and reactivity over a Pt(111) model catalyst. Furfural decarbonylation to furan is highly sensitive to reaction conditions, in particular, surface crowding and associated changes in the adsorption geometry: furfural adopts a planar geometry on clean Pt(111) at low coverage, tilting at higher coverage to form a densely packed furfural adlayer.

View Article and Find Full Text PDF

Supported metal catalysts play a central role in the modern chemical industry but often exhibit poor on-stream stability. The strong metal-support interaction (SMSI) offers a route to control the structural properties of supported metals and, hence, their reactivity and stability. Conventional wisdom holds that supported Au cannot manifest a classical SMSI, which is characterized by reversible metal encapsulation by the support upon high-temperature redox treatments.

View Article and Find Full Text PDF

Narrow-band photoconductivity with a spectral width of 0.16 eV is obtained from solution-processed colloidal ZnO nanocrystals beneath the band-edge at 2.25 eV.

View Article and Find Full Text PDF

Fast pyrolysis bio-oils possess unfavorable physicochemical properties and poor stability, in large part, owing to the presence of carboxylic acids, which hinders their use as biofuels. Catalytic esterification offers an atom- and energy-efficient route to upgrade pyrolysis bio-oils. Propyl sulfonic acid (PrSO H) silicas are active for carboxylic acid esterification but suffer mass-transport limitations for bulky substrates.

View Article and Find Full Text PDF

A family of silica-supported, magnetite nanoparticle catalysts was synthesised and investigated for continuous-flow acetic acid ketonisation as a model pyrolysis bio-oil upgrading reaction. The physico-chemical properties of FeO/SiO catalysts were characterised by using high-resolution transmission electron microscopy, X-ray absorption spectroscopy, X-ray photo-electron spectroscopy, diffuse reflectance infrared Fourier transform spectroscopy, thermogravimetric analysis and porosimetry. The acid site densities were inversely proportional to the FeO particle size, although the acid strength and Lewis character were size-invariant, and correlated with the specific activity for the vapour-phase acetic ketonisation to acetone.

View Article and Find Full Text PDF