We describe the synthesis and characterization of a new class of oligomers built from a terphenyl-based amino acid. These oligomeric amides are of interest because the adoption of specific conformations could potentially be driven by the coordinated formation of inter-residue hydrogen bonds and aromatic interactions. Although high-resolution structural data have proven inaccessible, circular dichroism and nuclear magnetic resonance studies suggest that the new oligomers fold concomitantly with discrete self-association in chloroform.
View Article and Find Full Text PDFRacemic crystallography has been used to elucidate the secondary and tertiary structures of peptides and small proteins that are recalcitrant to conventional crystallization. It is unclear, however, whether racemic crystallography can capture native quaternary structure, which could be disrupted by heterochiral associations. We are exploring the use of racemic crystallography to characterize the self-assembly behavior of membrane-associated peptides, very few of which have been crystallized.
View Article and Find Full Text PDFA mild and selective new method was discovered to reduce acetanilides and other carbonyl compounds. Unlike sodium borohydride, which is selective in reducing aldehydes and ketones, this new protocol is uniquely selective in reducing acetanilides and nitriles over other carbonyl containing functional groups. Additionally, β-ketoamides were shown to be reduced at the ketone preferentially over the amide.
View Article and Find Full Text PDF