Publications by authors named "Adam F Forrest"

A wide spectral asymmetry between the front and rear facets of a tapered chirped quantum dot multi-section superluminescent diode is reported. The spectral asymmetry between the two facet outputs was found to be tunable and highly dependent on the bias asymmetry between the two contact sections, with a spectral mismatch of up to 14 nm. Numerical simulations confirmed a relationship between this spectral asymmetry and the non-uniform filling of the quantum dots' confined states when different current densities are applied to the device electrodes.

View Article and Find Full Text PDF

Double-pass amplification of picosecond pulses is demonstrated and compared with single-pass amplification. This was achieved using a two-section tapered semiconductor optical amplifier with a chirped quantum-dot active region and a mode-locked laser diode as a seed. Across the range of biasing conditions common to both configurations, an enhancement in signal gain of up to 7 dB and output power by a factor of 4.

View Article and Find Full Text PDF

A high-power quantum-dot superluminescent diode is demonstrated under continuous-wave operation, with an output power of 137.5 mW and a corresponding spectral bandwidth of 21 nm. This represents not only the highest output power, but also a record-high power spectral density of 6.

View Article and Find Full Text PDF