The amygdala processes and directs inputs and outputs that are key to fear behavior. However, whether it directly senses fear-evoking stimuli is unknown. Because the amygdala expresses acid-sensing ion channel-1a (ASIC1a), and ASIC1a is required for normal fear responses, we hypothesized that the amygdala might detect a reduced pH.
View Article and Find Full Text PDFNo animal models replicate the complexity of human depression. However, a number of behavioral tests in rodents are sensitive to antidepressants and may thus tap important underlying biological factors. Such models may also offer the best opportunity to discover novel treatments.
View Article and Find Full Text PDFMost seizures stop spontaneously; however, the molecular mechanisms that terminate seizures remain unknown. Observations that seizures reduced brain pH and that acidosis inhibited seizures indicate that acidosis halts epileptic activity. Because acid-sensing ion channel 1a (ASIC1a) is exquisitely sensitive to extracellular pH and regulates neuron excitability, we hypothesized that acidosis might activate ASIC1a, which would terminate seizures.
View Article and Find Full Text PDFBackground: The molecular mechanisms underlying innate fear are poorly understood. Previous studies indicated that the acid sensing ion channel ASIC1a influences fear behavior in conditioning paradigms. However, these differences may have resulted from an ASIC1a effect on learning, memory, or the expression of fear.
View Article and Find Full Text PDF