Publications by authors named "Adam E Brummett"

The organosulfur metabolite dimethylsulfoniopropionate (DMSP) and its enzymatic breakdown product dimethyl sulfide (DMS) have important implications in the global sulfur cycle and in marine microbial food webs. Enormous amounts of DMSP are produced in marine environments where microbial communities import and catabolize it via either the demethylation or the cleavage pathways. The enzymes that cleave DMSP are termed "DMSP lyases" and generate acrylate or hydroxypropionate, and ~10tons of DMS annually.

View Article and Find Full Text PDF

The marine microbial catabolism of dimethylsulfoniopropionate (DMSP) by the lyase pathway liberates ∼300 million tons of dimethyl sulfide (DMS) per year, which plays a major role in the biogeochemical cycling of sulfur. Recent biochemical and structural studies of some DMSP lyases, including DddQ, reveal the importance of divalent transition metal ions in assisting DMSP cleavage. While DddQ is believed to be zinc-dependent primarily on the basis of structural studies, excess zinc inhibits the enzyme.

View Article and Find Full Text PDF

The osmolyte dimethylsulfoniopropionate (DMSP) is a key nutrient in marine environments and its catabolism by bacteria through enzymes known as DMSP lyases generates dimethylsulfide (DMS), a gas of importance in climate regulation, the sulfur cycle, and signaling to higher organisms. Despite the environmental significance of DMSP lyases, little is known about how they function at the mechanistic level. In this study we biochemically characterize DddW, a DMSP lyase from the model roseobacter Ruegeria pomeroyi DSS-3.

View Article and Find Full Text PDF