Sharp changes in state, such as transitions from survival to extinction, are hallmarks of evolutionary dynamics in biological systems. These transitions can be explored using the techniques of statistical physics and the physics of nonlinear and complex systems. For example, a survival-to-extinction transition can be characterized as a non-equilibrium phase transition to an absorbing state.
View Article and Find Full Text PDFAdvances in mass-spectrometry have generated increasingly large-scale proteomics datasets containing tens of thousands of phosphorylation sites (phosphosites) that require prioritization. We develop a bioinformatics tool called HotPho and systematically discover 3D co-clustering of phosphosites and cancer mutations on protein structures. HotPho identifies 474 such hybrid clusters containing 1255 co-clustering phosphosites, including RET p.
View Article and Find Full Text PDFAberrant phospho-signaling is a hallmark of cancer. We investigated kinase-substrate regulation of 33,239 phosphorylation sites (phosphosites) in 77 breast tumors and 24 breast cancer xenografts. Our search discovered 2134 quantitatively correlated kinase-phosphosite pairs, enriching for and extending experimental or binding-motif predictions.
View Article and Find Full Text PDFSummary: A database of curated genomic variants with clinically supported drug therapies and other oncological annotations is described. The accompanying web portal provides a search engine with two modes: one that allows users to query gene, cancer type, variant type or position for druggable mutations, and another to search for and to visualize, on three-dimensional protein structures, putative druggable sites that cluster with known druggable mutations.
Availability And Implementation: http://dinglab.
Summary: CharGer (Characterization of Germline variants) is a software tool for interpreting and predicting clinical pathogenicity of germline variants. CharGer gathers evidence from databases and annotations, provided by local tools and files or via ReST APIs, and classifies variants according to ACMG guidelines for assessing variant pathogenicity. User-designed pathogenicity criteria can be incorporated into CharGer's flexible framework, thereby allowing users to create a customized classification protocol.
View Article and Find Full Text PDFWe conducted the largest investigation of predisposition variants in cancer to date, discovering 853 pathogenic or likely pathogenic variants in 8% of 10,389 cases from 33 cancer types. Twenty-one genes showed single or cross-cancer associations, including novel associations of SDHA in melanoma and PALB2 in stomach adenocarcinoma. The 659 predisposition variants and 18 additional large deletions in tumor suppressors, including ATM, BRCA1, and NF1, showed low gene expression and frequent (43%) loss of heterozygosity or biallelic two-hit events.
View Article and Find Full Text PDFIdentifying genomic variants is a fundamental first step toward the understanding of the role of inherited and acquired variation in disease. The accelerating growth in the corpus of sequencing data that underpins such analysis is making the data-download bottleneck more evident, placing substantial burdens on the research community to keep pace. As a result, the search for alternative approaches to the traditional "download and analyze" paradigm on local computing resources has led to a rapidly growing demand for cloud-computing solutions for genomics analysis.
View Article and Find Full Text PDFNull models are crucial for understanding evolutionary processes such as speciation and adaptive radiation. We analyse an agent-based null model, considering a case without selection-neutral evolution-in which organisms are defined only by phenotype. Universal dynamics has previously been demonstrated in a related model on a neutral fitness landscape, showing that this system belongs to the directed percolation (DP) universality class.
View Article and Find Full Text PDFLocal concentrations of mutations are well known in human cancers. However, their three-dimensional spatial relationships in the encoded protein have yet to be systematically explored. We developed a computational tool, HotSpot3D, to identify such spatial hotspots (clusters) and to interpret the potential function of variants within them.
View Article and Find Full Text PDF