The retrograde transport inhibitor Retro-2 has a protective effect on cells and in mice against Shiga-like toxins and ricin. Retro-2 causes toxin accumulation in early endosomes and relocalization of the Golgi SNARE protein syntaxin-5 to the endoplasmic reticulum. The molecular mechanisms by which this is achieved remain unknown.
View Article and Find Full Text PDFThe surface glycoprotein (GP) of Ebola virus causes many of the virus's pathogenic effects, including a dramatic loss of endothelial cell adhesion associated with widespread hemorrhaging during infection. Although the GP-mediated deadhesion depends on its extracellular mucin-like domain, it is unknown whether any, or all, of this domain's densely clustered -glycosylation sites are required. It is also unknown whether any of the 20 distinct polypeptide GalNAc-transferases (ppGalNAc-Ts) that initiate mucin-type -glycosylation in human cells are functionally required.
View Article and Find Full Text PDFMol Biol Cell
September 2017
Elevated, nontoxic doses of manganese (Mn) protect against Shiga toxin-1-induced cell death via down-regulation of GPP130, a cycling Golgi membrane protein that serves as an endosome-to-Golgi trafficking receptor for the toxin. Mn binds to GPP130 in the Golgi and causes GPP130 to oligomerize/aggregate, and the complexes are diverted to lysosomes. In fact, based on experiments using the self-interacting FM domain, it appears generally true that aggregation of a Golgi protein leads to its lysosomal degradation.
View Article and Find Full Text PDFSmall molecule inhibitors of site-specific O-glycosylation by the polypeptide N-acetylgalactosaminyltransferase (ppGalNAc-T) family are currently unavailable but hold promise as therapeutics, especially if selective against individual ppGalNAc-T isozymes. To identify a compound targeting the ppGalNAc-T3 isozyme, we screened libraries to find compounds that act on a cell-based fluorescence sensor of ppGalNAc-T3 but not on a sensor of ppGalNAc-T2. This identified a hit that subsequent in vitro analysis showed directly binds and inhibits purified ppGalNAc-T3 with no detectable activity against either ppGalNAc-T2 or ppGalNAc-T6.
View Article and Find Full Text PDFMethods Mol Biol
January 2018
Mucin-type O-glycosylation occurring in the Golgi apparatus is an important protein posttranslational modification initiated by up to 20 GalNAc-transferase isozymes with largely distinct substrate specificities. Regulation of this enzyme family affects a vast array of proteins transiting the secretory pathway and misregulation causes human diseases. Here we describe the use of protein-based fluorescence sensors that traffic in the secretory pathway to monitor GalNAc-transferase activity in living cells.
View Article and Find Full Text PDFOriginally identified as Golgi stacking factors in vitro, the Golgi reassembly stacking protein (GRASP) family has been shown to act as membrane tethers with multiple cellular roles. As an update to previous comprehensive reviews of the GRASP family (Giuliani et al., 2011; Vinke et al.
View Article and Find Full Text PDFMol Biol Cell
December 2015
Manganese protects cells against forms of Shiga toxin by down-regulating the cycling Golgi protein GPP130. Down-regulation occurs when Mn binding causes GPP130 to oligomerize and traffic to lysosomes. To determine how GPP130 is redirected to lysosomes, we tested the role of GGA1 and clathrin, which mediate sorting in the canonical Golgi-to-lysosome pathway.
View Article and Find Full Text PDFHumans express up to 20 isoforms of GalNAc-transferase (herein T1-T20) that localize to the Golgi apparatus and initiate O-glycosylation. Regulation of this enzyme family affects a vast array of proteins transiting the secretory pathway and diseases arise upon misregulation of specific isoforms. Surprisingly, molecular probes to monitor GalNAc-transferase activity are lacking and there exist no effective global or isoform-specific inhibitors.
View Article and Find Full Text PDFManganese (Mn) protects cells against lethal doses of purified Shiga toxin by causing the degradation of the cycling transmembrane protein GPP130, which the toxin uses as a trafficking receptor. Mn-induced GPP130 down-regulation, in addition to being a potential therapeutic approach against Shiga toxicosis, is a model for the study of metal-regulated protein sorting. Significantly, however, the mechanism by which Mn regulates GPP130 trafficking is unknown.
View Article and Find Full Text PDFCurr Protoc Cytom
July 2014
Generating loss of protein function is a powerful investigatory tool particularly if carried out on a physiologically relevant timescale in a live-cell fluorescent imaging experiment. KillerRed mediated chromophore assisted light inactivation (CALI) uses genetic encoding for specificity and light for acute inactivation that can also be spatially restricted. This unit provides protocols for setting up and carrying out properly controlled KillerRed experiments during live-cell imaging of cultured cells.
View Article and Find Full Text PDFGRASP65 and GRASP55 are peripheral Golgi proteins localized to cis and medial/trans cisternae, respectively. They are implicated in diverse aspects of protein transport and structure related to the Golgi complex, including the stacking of the Golgi stack and/or the linking of mammalian Golgi stacks into the Golgi ribbon. Using a mouse model, we interfered with GRASP65 by homologous recombination and confirmed its absence of expression.
View Article and Find Full Text PDFThe mammalian Golgi reassembly stacking protein (GRASP) proteins are Golgi-localized homotypic membrane tethers that organize Golgi stacks into a long, contiguous ribbon-like structure. It is unknown how GRASPs undergo trans pairing given that cis interactions between the proteins in the plane of the membrane are intrinsically favored. To test the hypothesis that myristoylation of the self-interacting GRASP domain restricts its orientation on the membrane to favor trans pairing, we established an in vitro assay that recapitulates GRASP-dependent membrane tethering and used neutron reflection under similar conditions to determine the orientation of the GRASP domain.
View Article and Find Full Text PDFHomotypic membrane tethering by the Golgi reassembly and stacking proteins (GRASPs) is required for the lateral linkage of mammalian Golgi ministacks into a ribbon-like membrane network. Although GRASP65 and GRASP55 are specifically localized to cis and medial/trans cisternae, respectively, it is unknown whether each GRASP mediates cisternae-specific tethering and whether such specificity is necessary for Golgi compartmentalization. Here each GRASP was tagged with KillerRed (KR), expressed in HeLa cells, and inhibited by 1-min exposure to light.
View Article and Find Full Text PDFShiga toxicosis is caused by retrograde trafficking of one of three types of Shiga toxin (STx), STx, STx1, or STx2. Trafficking depends on the toxin B subunits, which for STx and STx1 are identical and bind GPP130, a manganese (Mn)-sensitive intracellular trafficking receptor. Elevated Mn down-regulates GPP130, rendering STx/STx1 harmless.
View Article and Find Full Text PDFBacterial AB5 toxins are a clinically relevant class of exotoxins that include several well-known members such as Shiga, cholera, and pertussis toxins. Infections with toxin-producing bacteria cause devastating human diseases that affect millions of individuals each year and have no definitive medical treatment. The molecular targets of AB5 toxins reside in the cytosol of infected cells, and the toxins reach the cytosol by trafficking through the retrograde membrane transport pathway that avoids degradative late endosomes and lysosomes.
View Article and Find Full Text PDFMembrane recruitment of the COPI vesicle coat is fundamental to its function and contributes to compartment identity in the early secretory pathway. COPI recruitment is triggered by guanine nucleotide exchange activating the Arf1 GTPase, but the key exchange factor, GBF1, is a peripheral membrane component whose membrane association is dependent on another GTPase, Rab1. Inactive Rab GTPases are in a soluble complex with guanine nucleotide dissociation inhibitor (GDI) and activation of Rab GTPases by exchange factors can be enhanced by GDI dissociation factors (GDFs).
View Article and Find Full Text PDFProtein O-glycosylation is important in numerous processes including the regulation of proteolytic processing sites by O-glycan masking in select newly synthesized proteins. To investigate O-glycan-mediated masking using an assay amenable to large-scale screens, we generated a fluorescent biosensor with an O-glycosylation site situated to mask a furin cleavage site. The sensor is activated when O-glycosylation fails to occur because furin cleavage releases a blocking domain allowing dye binding to a fluorogen activating protein.
View Article and Find Full Text PDFMembrane motility is a fundamental characteristic of all eukaryotic cells. One of the best-known examples is that of the mammalian Golgi apparatus, where constant inward movement of Golgi membranes results in its characteristic position near the centrosome. While it is clear that the minus-end-directed motor dynein is required for this process, the mechanism and regulation of dynein recruitment to Golgi membranes remains unknown.
View Article and Find Full Text PDFMitotic phosphorylation of the conserved GRASP domain of GRASP65 disrupts its self-association, leading to a loss of Golgi membrane tethering, cisternal unlinking, and Golgi breakdown. Recently, the structural basis of the GRASP self-interaction was determined, yet the mechanism by which phosphorylation disrupts this activity is unknown. Here, we present the crystal structure of a GRASP phosphomimic containing an aspartic acid substitution for a serine residue (Ser-189) that in GRASP65 is phosphorylated by PLK1, causing a block in membrane tethering and Golgi ribbon formation.
View Article and Find Full Text PDFAcute inhibition is a powerful technique to test proteins for direct roles and order their activities in a pathway, but as a general gene-based strategy, it is mostly unavailable in mammalian systems. As a consequence, the precise roles of proteins in membrane trafficking have been difficult to assess in vivo. Here we used a strategy based on a genetically encoded fluorescent protein that generates highly localized and damaging reactive oxygen species to rapidly inactivate exit from the endoplasmic reticulum (ER) during live-cell imaging and address the long-standing question of whether the integrity of the Golgi complex depends on constant input from the ER.
View Article and Find Full Text PDFInfections with Shiga toxin (STx)-producing bacteria cause more than a million deaths each year and have no definitive treatment. To exert its cytotoxic effect, STx invades cells through retrograde membrane trafficking, escaping the lysosomal degradative pathway. We found that the widely available metal manganese (Mn(2+)) blocked endosome-to-Golgi trafficking of STx and caused its degradation in lysosomes.
View Article and Find Full Text PDFThe Golgi complex processes secretory proteins and lipids, carries out protein sorting and signaling, and supports growth and composition of the plasma membrane. Golgi complex size likely is regulated to meet the demands of each function, and this may involve differential changes of its distinct subdomains. Nevertheless, the primary size change is elongation of the Golgi ribbon-like network as occurs during Golgi complex doubling for mitosis and during differentiation involving upregulated secretion.
View Article and Find Full Text PDFBiogenesis of the ribbon-like membrane network of the mammalian Golgi requires membrane tethering by the conserved GRASP domain in GRASP65 and GRASP55, yet the tethering mechanism is not fully understood. Here, we report the crystal structure of the GRASP55 GRASP domain, which revealed an unusual arrangement of two tandem PDZ folds that more closely resemble prokaryotic PDZ domains. Biochemical and functional data indicated that the interaction between the ligand-binding pocket of PDZ1 and an internal ligand on PDZ2 mediates the GRASP self-interaction, and structural analyses suggest that this occurs via a unique mode of internal PDZ ligand recognition.
View Article and Find Full Text PDFThe Golgi apparatus in mammalian cells is positioned near the centrosome-based microtubule-organizing center (Fig. 1). Secretory cargo moves inward in membrane carriers for delivery to Golgi membranes in which it is processed and packaged for transport outward to the plasma membrane.
View Article and Find Full Text PDFP-type ATPases transport a wide array of ions, regulate diverse cellular processes, and are implicated in a number of human diseases. However, mechanisms that increase ion transport by these ubiquitous proteins are not known. SPCA1 is a P-type pump that transports Mn(2+) from the cytosol into the Golgi.
View Article and Find Full Text PDF