Publications by authors named "Adam D Law"

Hard-core/soft shell (HCSS) particles have been shown to self-assemble into a remarkably rich variety of structures under compression due to the simple interplay between the hard-core and soft-shoulder length scales in their interactions. Most studies in this area model the soft shell interaction as a square shoulder potential. Although appealing from a theoretical point of view, the potential is physically unrealistic because there is no repulsive force in the soft shell regime, unlike in experimental HCSS systems.

View Article and Find Full Text PDF

The adsorption of colloidal particles to fluid interfaces is a phenomenon that is of interest to multiple disciplines across the physical and biological sciences. In this review we provide an entry level discussion of our current understanding on the physical principles involved and experimental observations of the adsorption of a single isolated particle to a liquid-liquid interface. We explore the effects that a variation of the morphology and surface chemistry of a particle can have on its ability to adhere to a liquid interface, from a thermodynamic as well as a kinetic perspective, and the impact of adsorption behaviour on potential applications.

View Article and Find Full Text PDF

Spherical colloidal particles generally self-assemble into hexagonal lattices in two dimensions. However, more complex, non-hexagonal phases have been predicted theoretically for isotropic particles with a soft repulsive shoulder but have not been experimentally realized. We study the phase behavior of microspheres in the presence of poly(N-isopropylacrylamide) (PNiPAm) microgels at the air/water interface.

View Article and Find Full Text PDF

The interaction between micron-sized charged colloidal particles at polar/non-polar liquid interfaces remains surprisingly poorly understood for a relatively simple physical chemistry system. By measuring the pair correlation function g(r) for different densities of polystyrene particles at the decane-water interface, and using a powerful predictor-corrector inversion scheme, effective pair-interaction potentials can be obtained up to fairly high densities, and these reproduce the experimental g(r) in forward simulations, so are self consistent. While at low densities these potentials agree with published dipole-dipole repulsion, measured by various methods, an apparent density dependence and long range attraction are obtained when the density is higher.

View Article and Find Full Text PDF

We study the structure of binary monolayers of large (3  μm diameter) very hydrophobic (A) and large (3  μm diameter) hydrophilic (B) or small (1  μm diameter) hydrophilic (C) silica particles at an octane-water interface. By tuning the composition and packing geometry of the mixed monolayer, we find that a rich variety of two-dimensional hexagonal superlattices of mixed A/B or A/C clusters are formed, stabilized by short-ranged electrostatic induced dipole interactions. The cluster structures obtained are in excellent agreement with zero temperature calculations, indicating that the self-assembly process can be effectively controlled.

View Article and Find Full Text PDF

We study the structure of mixed monolayers of large (3 μm diameter) and small (1 μm diameter) very hydrophobic silica particles at an octane-water interface as a function of the number fraction of small particles ξ. We find that a rich variety of two-dimensional hexagonal super-lattices of large (A) and small (B) particles can be obtained in this system due to strong and long-range electrostatic repulsions through the nonpolar octane phase. The structures obtained for the different compositions are in good agreement with zero temperature calculations and finite temperature computer simulations.

View Article and Find Full Text PDF