Publications by authors named "Adam D Friedman"

Two challenges frequently faced by schools of pharmacy are the training of a workforce that reflects the racial and ethnic diversity of the populations they serve, as well as raising public awareness of the mission and impact of pharmacy schools. One underutilized strategy in addressing these challenges is directly engaging high school students, whose race and ethnicity more closely reflect the increasing diversity of the US population, in immersive research experiences at schools of pharmacy. Motivated by the multidisciplinary nature of pharmaceutical sciences that involve integration of various science, technology, engineering, and mathematics (STEM) disciplines, the UNC Eshelman School of Pharmacy created the Young Innovators Program (YIP).

View Article and Find Full Text PDF

Background: Professional schools, such as schools of pharmacy, are rarely involved with promoting STEM interests among secondary school students. To address this shortcoming, the Young Innovators Program (YIP) was created to provide local secondary school students a summer immersive experiential program at the UNC Eshelman School of Pharmacy. The objective of this study was to assess the ability of the inaugural YIP to promote STEM interest, career awareness, and self-efficacy.

View Article and Find Full Text PDF

When developed as targeting ligands for the in vivo delivery of biomaterials to biological systems, RNA aptamers immediately face numerous obstacles, in particular nuclease degradation and post-selection 2' modification. This study aims to develop a novel class of highly stable, 2'-fully modified RNA aptamers that are ideal for the targeted delivery of biomaterials. We demonstrated the facile transcription of a fGmH (2'-F-dG, 2'-OMe-dA/dC/dU) RNA library with unexpected hydrophobicity, the direct selection of aptamers from a fGmH RNA library that bind Staphylococcus aureus Protein A (SpA) as a model target, and the superior nuclease and serum stability of these aptamers compared to 2'-partially modified RNA variants.

View Article and Find Full Text PDF

The polygenetic nature of most cancers emphasizes the necessity of cancer therapies that target multiple essential signaling pathways. However, there is a significant paucity of targeting ligands with multi-specificities for targeted delivery of biomaterials. To address this unmet need, we generated a tetraspecific targeting ligand that recognizes four different cancer biomarkers, including VEGFR2, αvβ3 integrin, EGFR, and HER2 receptors, which have been implicated in numerous malignant tumors.

View Article and Find Full Text PDF

One major challenge in nanomedicine is the selective delivery of nanoparticles to diseased tissues. Nanoparticle delivery systems require targeting for specific delivery to pathogenic sites when enhanced permeability and retention (EPR) is not suitable or inefficient. Nanoparticle functionalization is a widely-used technique for targeting ligand conjugation; these ligands possess inherent abilities to direct nanoparticle selective binding.

View Article and Find Full Text PDF