This paper applies a spatial allocation optimization model to evaluate logging residue supply potential and costs for bioelectricity generation within the conterminous United States. Simulations are developed to estimate a range in supply potential and costs across a broad range of sensitivity scenarios, including (1) different biomass availability rates based on observed roundwood removals, (2) renewable energy targets set nationally or at a state-level, (3) with and without biomass sourcing restrictions within a state, (4) with and without access to public lands, and (5) policy restrictions on eligible facility types. Under the least restrictive policy scenario (a hypothetical national mandate), total supply is 8.
View Article and Find Full Text PDFPolymer nanopillars (40-80 nm in diameter and 100 nm in pitch) were fabricated at high density over large areas directly on bulk tissue culture polystyrene plates using nanoimprint lithography. Nanoporous Si molds for imprinting were generated by transfer from an anodic alumina membrane. Ultrahigh aspect ratio polymer nanopillars were formed in a novel procedure using controlled elongation of the imprinted pillars during mold release.
View Article and Find Full Text PDFIn this study, we have used nanoimprinting to create a range of micro- and nanoscale gratings, or their combination, in bulk polystyrene plates to investigate anisotropic cell behaviors of human dermal fibroblasts with respect to the aspect ratio (depth/width) of gratings. The depth and width of the polystyrene gratings both show strong effects individually on cell alignment and elongation that are qualitatively similar to the results of other studies. However, consistent quantitative comparison of these individual parameters with different studies is complicated by the diversity of combinations of width and depth that have been tested.
View Article and Find Full Text PDF