We describe the presentation of a 72-year-old woman with concurrent diagnoses of lung adenocarcinoma in conjunction with disseminated A infection; a rare pathogen which can mimic lung cancer both symptomatically and radiologically. The patient was found to have a pelvic mass initially presumed to be cervical metastases-later confirmed to be of xanthogranulomatous inflammatory origin following transvaginal ultrasound-guided biopsy. The pathogenic cause, identified following pleural aspirate, being a fully sensitive infection; treated with prolonged course amoxicillin.
View Article and Find Full Text PDFUnderstanding the mechanisms of collective cell migration is crucial for cancer metastasis, wound healing and many developmental processes. Imaging a migrating cluster in vivo is feasible, but the quantification of individual cell behaviours remains challenging. We have developed an image analysis toolkit, CCMToolKit, to quantify the Drosophila border cell system.
View Article and Find Full Text PDFAngiogenesis plays a major role in tumor growth and metastasis, with tumor perfusion regarded as a marker for angiogenesis. To evaluate antiangiogenic treatment response in vivo, we investigated arterial spin labeling (ASL) magnetic resonance imaging (MRI) to measure tumor perfusion quantitatively. Chronic and 24-h acute treatment responses to bevacizumab were assessed by ASL and dynamic-contrast-enhanced (DCE) MRI in the A498 xenograft mouse model.
View Article and Find Full Text PDFThe environment through which cells migrate in vivo differs considerably from the in vitro environment where cell migration is often studied. In vivo many cells migrate in crowded and complex 3-dimensional tissues and may use other cells as the substratum on which they move. This includes neurons, glia and their progenitors in the brain.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2012
Directed cell migration is important for normal animal development and physiology. The process can also be subverted by tumor cells to invade other tissues and to metastasize. Some cells, such as leukocytes, migrate individually; other cells migrate together in groups or sheets, called collective cell migration.
View Article and Find Full Text PDFBorder cells perform a collective, invasive, and directed migration during Drosophila melanogaster oogenesis. Two receptor tyrosine kinases (RTKs), the platelet-derived growth factor/vascular endothelial growth factor-related receptor (PVR) and the epidermal growth factor receptor (EGFR), are important for reading guidance cues, but how these cues steer migration is not well understood. During collective migration, front, back, and side extensions dynamically project from individual cells within the group.
View Article and Find Full Text PDFA series of vectors has been designed to enhance the versatility of targeted homologous recombination. Recombinase-mediated cassette exchange permits sequential targeting at any locus and improves flexibility in making user-defined mutations. Application of RMCE to delete an intronic microRNA gene is described.
View Article and Find Full Text PDFAlthough directed migration is a feature of both individual cells and cell groups, guided migration has been studied most extensively for single cells in simple environments. Collective guidance of cell groups remains poorly understood, despite its relevance for development and metastasis. Neural crest cells and neuronal precursors migrate as loosely organized streams of individual cells, whereas cells of the fish lateral line, Drosophila tracheal tubes and border-cell clusters migrate as more coherent groups.
View Article and Find Full Text PDFMacrophages detecting and migrating toward sites of injury and infection represent one of the first steps in an immune response. Here we directly image macrophage birth and migration in vivo in transgenic medaka fish. Macrophages are born as frequently dividing, immotile cells with spherical morphology that differentiate into flat, highly motile cells.
View Article and Find Full Text PDFBackground: The Adenomatous polyposis coli (APC) tumour suppressor is found in multiple discrete subcellular locations, which may reflect sites of distinct functions. In Drosophila epithelial cells, the predominant APC relative (E-APC) is concentrated at the apicolateral adherens junctions. Genetic analysis indicates that this junctional association is critical for the function of E-APC in Wnt signalling and in cellular adhesion.
View Article and Find Full Text PDFWnt signalling controls the transcription of genes that function during normal and malignant development. Stimulation by canonical Wnt ligands activates beta-catenin (or Drosophila melanogaster Armadillo) by blocking its phosphorylation, resulting in its stabilization and translocation to the nucleus. Here, Armadillo/beta-catenin binds to TCF/LEF transcription factors and recruits chromatin-modifying and -remodelling complexes to transcribe Wnt target genes.
View Article and Find Full Text PDFWnt signaling causes changes in gene transcription that are pivotal for normal and malignant development. A key effector of the canonical Wnt pathway is beta-catenin, or Drosophila Armadillo. In the absence of Wnt ligand, beta-catenin is phosphorylated by the Axin complex, which earmarks it for rapid degradation by the ubiquitin system.
View Article and Find Full Text PDFThe adenomatous polyposis coli (APC) protein is inactivated in most colorectal tumours. APC loss is an early event in tumorigenesis, and causes an increase of nuclear beta-catenin and its transcriptional activity. This is thought to be the driving force for tumour progression.
View Article and Find Full Text PDF