Recent studies utilizing transcriptomics, metabolomics, and bottom up proteomics have identified molecular signatures of kidney allograft pathology. Although these results make significant progress toward non-invasive differential diagnostics of dysfunction of a transplanted kidney, they provide little information on the intact, often modified, protein molecules present during progression of this pathology. Because intact proteins underpin diverse biological processes, measuring the relative abundance of their modified forms promises to advance mechanistic understanding, and might provide a new class of biomarker candidates.
View Article and Find Full Text PDFProtein complexes perform an array of crucial cellular functions. Elucidating their non-covalent interactions and dynamics is paramount for understanding the role of complexes in biological systems. While the direct characterization of biomolecular assemblies has become increasingly important in recent years, native fractionation techniques that are compatible with downstream analysis techniques, including mass spectrometry, are necessary to further expand these studies.
View Article and Find Full Text PDFDecapod crustaceans are important animal models for neurobiologists due to their relatively simple nervous systems with well-defined neural circuits and extensive neuromodulation by a diverse set of signaling peptides. However, biochemical characterization of these endogenous neuropeptides is often challenging due to limited sequence information about these neuropeptide genes and the encoded preprohormones. By taking advantage of sequence homology in neuropeptides observed in related species using a home-built crustacean neuropeptide database, we developed a semi-automated sequencing strategy to characterize the neuropeptidome of Panulirus interruptus, an important aquaculture species, with few known neuropeptide preprohormone sequences.
View Article and Find Full Text PDFThe cadre of protein complexes in cells performs an array of functions necessary for life. Their varied structures are foundational to their ability to perform biological functions, lending great import to the elucidation of complex composition and dynamics. Native separation techniques that are operative on low sample amounts and provide high resolution are necessary to gain valuable data on endogenous complexes.
View Article and Find Full Text PDFIn the developing mammalian brain, inhibition of NMDA receptor can induce widespread neuroapoptosis, inhibit neurogenesis and cause impairment of learning and memory. Although some mechanistic insights into adverse neurological actions of these NMDA receptor antagonists exist, our understanding of the full spectrum of developmental events affected by early exposure to these chemical agents in the brain is still limited. Here we attempt to gain insights into the impact of pharmacologically induced excitatory/inhibitory imbalance in infancy on the brain proteome using mass spectrometric imaging (MSI).
View Article and Find Full Text PDFIntegral membrane proteins (IMPs) are of great biophysical and clinical interest because of the key role they play in many cellular processes. Here, a comprehensive top down study of 152 IMPs and 277 soluble proteins from human H1299 cells including 11 087 fragments obtained from collisionally activated dissociation (CAD), 6452 from higher-energy collisional dissociation (HCD), and 2981 from electron transfer dissociation (ETD) shows their great utility and complementarity for the identification and characterization of IMPs. A central finding is that ETD is ∼2-fold more likely to cleave in soluble regions than threshold fragmentation methods, whereas the reverse is observed in transmembrane domains with an observed ∼4-fold bias toward CAD and HCD.
View Article and Find Full Text PDFThe rise of the "Top Down" method in the field of mass spectrometry-based proteomics has ushered in a new age of promise and challenge for the characterization and identification of proteins. Injecting intact proteins into the mass spectrometer allows for better characterization of post-translational modifications and avoids several of the serious "inference" problems associated with peptide-based proteomics. However, successful implementation of a Top Down approach to endogenous or other biologically relevant samples often requires the use of one or more forms of separation prior to mass spectrometric analysis, which have only begun to mature for whole protein MS.
View Article and Find Full Text PDFTop-down proteomics is emerging as a viable method for the routine identification of hundreds to thousands of proteins. In this work we report the largest top-down study to date, with the identification of 1,220 proteins from the transformed human cell line H1299 at a false discovery rate of 1%. Multiple separation strategies were utilized, including the focused isolation of mitochondria, resulting in significantly improved proteome coverage relative to previous work.
View Article and Find Full Text PDFProteomic technology has advanced steadily since the development of 'soft-ionization' techniques for mass-spectrometry-based molecular identification more than two decades ago. Now, the large-scale analysis of proteins (proteomics) is a mainstay of biological research and clinical translation, with researchers seeking molecular diagnostics, as well as protein-based markers for personalized medicine. Proteomic strategies using the protease trypsin (known as bottom-up proteomics) were the first to be developed and optimized and form the dominant approach at present.
View Article and Find Full Text PDFThe interrogation of intact integral membrane proteins has long been a challenge for biological mass spectrometry. Here, we demonstrate the application of top down mass spectrometry to whole membrane proteins below 60 kDa with up to 8 transmembrane helices. Analysis of enriched mitochondrial membrane preparations from human cells yielded identification of 83 integral membrane proteins, along with 163 membrane-associated or soluble proteins, with a median q value of 3 × 10(-10).
View Article and Find Full Text PDFA complete understanding of the biological functions of large signaling peptides (>4 kDa) requires comprehensive characterization of their amino acid sequences and post-translational modifications, which presents significant analytical challenges. In the past decade, there has been great success with mass spectrometry-based de novo sequencing of small neuropeptides. However, these approaches are less applicable to larger neuropeptides because of the inefficient fragmentation of peptides larger than 4 kDa and their lower endogenous abundance.
View Article and Find Full Text PDFCurrent high-throughput top-down proteomic platforms provide routine identification of proteins less than 25 kDa with 4-D separations. This short communication reports the application of technological developments over the past few years that improve protein identification and characterization for masses greater than 25 kDa. Advances in separation science have allowed increased numbers of proteins to be identified, especially by nanoliquid chromatography (nLC) prior to mass spectrometry (MS) analysis.
View Article and Find Full Text PDFAs the process of top-down mass spectrometry continues to mature, we benchmark the next installment of an improving methodology that incorporates a tube-gel electrophoresis (TGE) device to separate intact proteins by molecular mass. Top-down proteomics is accomplished in a robust fashion to yield the identification of hundreds of unique proteins, many of which correspond to multiple protein forms. The TGE platform separates 0-50 kDa proteins extracted from the yeast proteome into 12 fractions prior to automated nanocapillary LC-MS/MS in technical triplicate.
View Article and Find Full Text PDFA full description of the human proteome relies on the challenging task of detecting mature and changing forms of protein molecules in the body. Large-scale proteome analysis has routinely involved digesting intact proteins followed by inferred protein identification using mass spectrometry. This 'bottom-up' process affords a high number of identifications (not always unique to a single gene).
View Article and Find Full Text PDFThe diverse proteome of an organism arises from such events as single nucleotide substitutions at the DNA level, different RNA processing, and dynamic enzymatic post-translational modifications. This minireview focuses on the measurement of intact proteins to describe the diversity found in proteomes. The field of biological mass spectrometry has steadily advanced, enabling improvements in the characterization of single proteins to proteins derived from cells or tissues.
View Article and Find Full Text PDFIn this paper, we demonstrate, using both experiment and simulation, how sample zone conductivity can affect plug-plug mixing in small molecule applications of electrophoretically mediated microanalysis (EMMA). The effectiveness of in-line mixing, which is driven by potential, can vary widely with experimental conditions. Using two small molecule systems, the effects of local conductivity differences between analyte plugs, reagent plugs and the BGE on EMMA analyses are examined.
View Article and Find Full Text PDFApplying high-throughput Top-Down MS to an entire proteome requires a yet-to-be-established model for data processing. Since Top-Down is becoming possible on a large scale, we report our latest software pipeline dedicated to capturing the full value of intact protein data in automated fashion. For intact mass detection, we combine algorithms for processing MS1 data from both isotopically resolved (FT) and charge-state resolved (ion trap) LC-MS data, which are then linked to their fragment ions for database searching using ProSight.
View Article and Find Full Text PDFTop Down mass spectrometry (MS) has emerged as an alternative to common Bottom Up strategies for protein analysis. In the Top Down approach, intact proteins are fragmented directly in the mass spectrometer to achieve both protein identification and characterization, even capturing information on combinatorial post-translational modifications. Just in the past two years, Top Down MS has seen incremental advances in instrumentation and dedicated software, and has also experienced a major boost from refined separations of whole proteins in complex mixtures that have both high recovery and reproducibility.
View Article and Find Full Text PDFDespite the availability of ultra-high-resolution mass spectrometers, methods for separation and detection of intact proteins for proteome-scale analyses are still in a developmental phase. Here we report robust protocols for online LC-MS to drive high-throughput top-down proteomics in a fashion similar to that of bottom-up proteomics. Comparative work on protein standards showed that a polymeric stationary phase led to superior sensitivity over a silica-based medium in reversed-phase nanocapillary LC, with detection of proteins >50 kDa routinely accomplished in the linear ion trap of a hybrid Fourier transform mass spectrometer.
View Article and Find Full Text PDFFor fractionation of intact proteins by molecular weight (MW), a sharply improved two-dimensional (2D) separation is presented to drive reproducible and robust fractionation before top-down mass spectrometry of complex mixtures. The "GELFrEE" (i.e.
View Article and Find Full Text PDFThis paper demonstrates proof-of-concept for the use of electrophoretically mediated microanalysis (EMMA) as a new approach to the determination of total antioxidant capacity (TAC). EMMA is a low-volume, high-efficiency capillary electrophoretic technique that has to date been underutilized for small molecule reactions. Here, nanoliter volumes of 2,6-dichlorophenolindophenol (DCIP) reagent solution are mixed with an antioxidant-containing sample within the confines of a narrow-bore capillary tube.
View Article and Find Full Text PDF