The surface hydration diffusivity of Lipase A (BSLA) has been characterized by low-field Overhauser dynamic nuclear polarization (ODNP) relaxometry using a series of spin-labeled constructs. Sites for spin-label incorporation were previously designed via an atomistic computational approach that screened for surface exposure, reflective of the surface hydration comparable to other proteins studied by this method, as well as minimal impact on protein function, dynamics, and structure of BSLA by excluding any surface site that participated in greater than 30% occupancy of a hydrogen bonding network within BSLA. Experimental ODNP relaxometry coupling factor results verify the overall surface hydration behavior for these BSLA spin-labeled sites similar to other globular proteins.
View Article and Find Full Text PDFSpin-labeling with electron paramagnetic resonance spectroscopy (EPR) is a facile method for interrogating macromolecular flexibility, conformational changes, accessibility, and hydration. Within we present a computationally based approach for the rational selection of reporter sites in Bacillus subtilis lipase A (BSLA) for substitution to cysteine residues with subsequent modification with a spin-label that are expected to not significantly perturb the wild-type structure, dynamics, or enzymatic function. Experimental circular dichroism spectroscopy, Michaelis-Menten kinetic parameters and EPR spectroscopy data validate the success of this approach to computationally select reporter sites for future magnetic resonance investigations of hydration and hydration changes induced by polymer conjugation, tethering, immobilization, or amino acid substitution in BSLA.
View Article and Find Full Text PDF