The development of machine-learning (ML) potentials offers significant accuracy improvements compared to molecular mechanics (MM) because of the inclusion of quantum-mechanical effects in molecular interactions. However, ML simulations are several times more computationally demanding than MM simulations, so there is a trade-off between speed and accuracy. One possible compromise are hybrid machine learning/molecular mechanics (ML/MM) approaches with mechanical embedding that treat the intramolecular interactions of the ligand at the ML level and the protein-ligand interactions at the MM level.
View Article and Find Full Text PDFWe present a comprehensive study investigating the potential gain in accuracy for calculating absolute solvation free energies (ASFE) using a neural network potential to describe the intramolecular energy of the solute. We calculated the ASFE for most compounds from the FreeSolv database using the Open Force Field (OpenFF) and compared them to earlier results obtained with the CHARMM General Force Field (CGenFF). By applying a nonequilibrium (NEQ) switching approach between the molecular mechanics (MM) description (either OpenFF or CGenFF) and the neural net potential (NNP)/MM level of theory (using ANI-2x as the NNP potential), we attempted to improve the accuracy of the calculated ASFEs.
View Article and Find Full Text PDFHere, we demonstrate that the radial distribution function can be mapped into a radial density-energy space and the relationship between the radial density and radial energy is linear for the ground and excited states of helium-like systems; the gradient of the resulting straight line delivers the energy of the state considered. To utilize this finding, a simple analytical expression for the total energy in terms of the density at the most probable nucleus-electron distance of the systems considered is derived using a fitting procedure.
View Article and Find Full Text PDFWe investigate the Colle-Salvetti (CS) formula, the basis of the Lee, Yang and Parr (LYP) correlation functional used in approximate density functional theory. The CS formula is reparametrized using high-accuracy Hartree-Fock (HF) wavefunctions to determine the accuracy of the formula to calculate anions. Fitting to the hydride ion or the two-electron system just prior to electron detachment at the HF level of theory does not, in general, improve the calculated correlation energies using the parameters derived from the CS/LYP method.
View Article and Find Full Text PDFThis paper presents high-accuracy correlation energies, intracule densities and Coulomb hole(s) for the lithium cation, helium, hydride ion and the system with the critical nuclear charge, , for binding two electrons. The fully correlated (FC) wave function and the Hartree-Fock (HF) wave function are both determined using a Laguerre-based wave function. It is found that for the lithium cation and the helium atom a secondary Coulomb hole is present, in agreement with a previous literature finding, confirming a counterintuitive conclusion that electron correlation can act to bring distant electrons closer together.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
March 2018
An implementation of the Hartree-Fock (HF) method using a Laguerre-based wave function is described and used to accurately study the ground state of two-electron atoms in the fixed nucleus approximation, and by comparison with fully correlated (FC) energies, used to determine accurate electron correlation energies. A variational parameter is included in the wave function and is shown to rapidly increase the convergence of the energy. The one-electron integrals are solved by series solution and an analytical form is found for the two-electron integrals.
View Article and Find Full Text PDF