Palladium-catalyzed aerobic oxidation reactions have been the focus of industrial application and extensive research efforts for nearly 60 years. A significant transition occurred in this field approximately 20 years ago, with the introduction of catalysts supported by ancillary ligands. The ligands play crucial roles in the reactions, including promotion of direct oxidation of palladium(0) by O, bypassing the typical requirement for Cu salts or related redox cocatalysts to facilitate oxidation of the reduced Pd catalyst; facilitation of key bond-breaking and bond-forming steps during substrate oxidation; and modulation of chemo-, regio-, or stereoselectivity of a reaction.
View Article and Find Full Text PDFA direct oxidative C-H amination affording 1-acetyl indolecarboxylates starting from 2-acetamido-3-arylacrylates has been achieved. Indole-2-carboxylates can be targeted with a straightforward deacetylation of the initial reaction products. The C-H amination reaction is carried out using a catalytic Pd(II) source with oxygen as the terminal oxidant.
View Article and Find Full Text PDFThe development of Rh(III)-catalyzed C-H conjugate addition/cyclization reactions that provide access to synthetically useful fused bi- and tricyclic nitrogen heterocycles is reported. A broad scope of C-H functionalization substrates and electrophilic olefin coupling partners is effective, and depending on the nature of the directing group, cyclic imide, amide, or heteroaromatic products are obtained. An efficient synthesis of a pyrrolophenanthridine alkaloid natural product, oxoassoanine, highlights the utility of this method.
View Article and Find Full Text PDF(DAF)Pd(OAc) (DAF = 4,5-diazafluorenone) catalyzes aerobic intramolecular aryl C-H amination with -benzenesulfonyl-2-aminobiphenyl in dioxane to afford the corresponding carbazole product. Mechanistic studies show that the reaction involves generation of peroxide species from 1,4-dioxane and O, and the reaction further benefits from the presence of glycolic acid, an oxidative decomposition product of dioxane. An induction period observed for the formation of the carbazole product correlates with the formation of 1,4-dioxan-2-hydroperoxide via autoxidation of 1,4-dioxane, and the in situ-generated peroxide is proposed to serve as the reactive oxidant in the reaction.
View Article and Find Full Text PDFDiastereoselective aza-Wacker cyclization of O-allyl hemiaminals under aerobic conditions enables efficient access to 1,2-aminoalcohol derivatives from allylic alcohols. The scope of this method is presented and its utility is highlighted in a streamlined synthesis of the biologically important aminosugar (–)-acosamine.
View Article and Find Full Text PDFA modified protocol has been identified for Pd-catalyzed intermolecular aminoacetoxylation of terminal and internal alkenes that enables the alkene to be used as the limiting reagent. The results prompt a reassessment of the stereochemical course of these reactions. X-ray crystallographic characterization of two of the products, together with isotopic labeling studies, show that the amidopalladation step switches from a cis-selective process under aerobic conditions to a trans-selective process in the presence of diacetoxyiodobenzene.
View Article and Find Full Text PDFA novel stereochemical substrate probe was used to assess the factors that affect the stereochemical course of nucleopalladation ( vs. ) in the context of an enantioselective Wacker-type reaction. We demonstrate that the enantioselectivity correlates directly with the nucleopalladation pathway, and both the neutral-donor and anionic ligands on palladium are capable of controlling selectivity for or nucleopalladation.
View Article and Find Full Text PDFEnantioselective intramolecular oxidative amidation of alkenes has been achieved using a (pyrox)Pd(II)(TFA)(2) catalyst (pyrox = pyridine-oxazoline, TFA = trifluoroacetate) and O(2) as the sole stoichiometric oxidant. The reactions proceed at room temperature in good-to-excellent yields (58-98%) and with high enantioselectivity (ee = 92-98%). Catalyst-controlled stereoselective cyclization reactions are demonstrated for a number of chiral substrates.
View Article and Find Full Text PDF