Determining how soft tissues are preserved and persist through geologic time are continuing challenge because decay begins immediately after senescence while diagenetic transformations generally progress over days to millions of years. However, in recent years, carbonate concretions containing partially-to-fully decayed macroorganisms have proven to be remarkable windows into the diagenetic continuum revealing insights into the fossilization process. This is because most concretions are the result of biologically induced mineral precipitation caused by the localized decay of organic matter, which oftentimes preserves a greater biological signal relative to their host sediment.
View Article and Find Full Text PDFSize is among the most important traits of any organism, yet the factors that control its evolution remain poorly understood. In this study, we investigate controls on the evolution of organismal size using a newly compiled database of nearly 25,000 foraminiferan species and subspecies spanning the past 400 million years. We find a transition in the pattern of foraminiferan size evolution from correlation with atmospheric pO2 during the Paleozoic (400-250 million years ago) to long-term stasis during the post-Paleozoic (250 million years ago to present).
View Article and Find Full Text PDFAtmospheric hyperoxia, with pO(2) in excess of 30%, has long been hypothesized to account for late Paleozoic (360-250 million years ago) gigantism in numerous higher taxa. However, this hypothesis has not been evaluated statistically because comprehensive size data have not been compiled previously at sufficient temporal resolution to permit quantitative analysis. In this study, we test the hyperoxia-gigantism hypothesis by examining the fossil record of fusulinoidean foraminifers, a dramatic example of protistan gigantism with some individuals exceeding 10 cm in length and exceeding their relatives by six orders of magnitude in biovolume.
View Article and Find Full Text PDF