RNA interference is a natural antiviral mechanism that could be harnessed to combat SARS-CoV-2 infection by targeting and destroying the viral RNA. We identified potent lipophilic small interfering RNA (siRNA) conjugates targeting highly conserved regions of SARS-CoV-2 outside of the spike-encoding region capable of achieving ≥3-log viral reduction. Serial passaging studies demonstrated that a two-siRNA combination prevented development of resistance compared to a single siRNA approach.
View Article and Find Full Text PDFAdeno-associated virus (AAV)-based gene therapy could be facilitated by the development of molecular switches to control the magnitude and timing of expression of therapeutic transgenes. RNA interference (RNAi)-based approaches hold unique potential as a clinically proven modality to pharmacologically regulate AAV gene dosage in a sequence-specific manner. We present a generalizable RNAi-based rheostat wherein hepatocyte-directed AAV transgene expression is silenced using the clinically validated modality of chemically modified small interfering RNA (siRNA) conjugates or vectorized co-expression of short hairpin RNA (shRNA).
View Article and Find Full Text PDFStudies of human genetics and pathophysiology have implicated the regulation of autophagy in inflammation, neurodegeneration, infection, and autoimmunity. These findings have motivated the use of small-molecule probes to study how modulation of autophagy affects disease-associated phenotypes. Here, we describe the discovery of the small-molecule probe BRD5631 that is derived from diversity-oriented synthesis and enhances autophagy through an mTOR-independent pathway.
View Article and Find Full Text PDFLysosomes perform a critical cellular function as a site of degradation for diverse cargoes including proteins, organelles, and pathogens delivered through distinct pathways, and defects in lysosomal function have been implicated in a number of diseases. Recent studies have elucidated roles for the lysosome in the regulation of protein synthesis, metabolism, membrane integrity, and other processes involved in homeostasis. Complex small-molecule natural products have greatly contributed to the investigation of lysosomal function in cellular physiology.
View Article and Find Full Text PDFAutophagy is an evolutionarily conserved catabolic process that directs cytoplasmic proteins, organelles and microbes to lysosomes for degradation. Autophagy acts at the intersection of pathways involved in cellular stress, host defense, and modulation of inflammatory and immune responses; however, the details of how the autophagy network intersects with these processes remain largely undefined. Given the role of autophagy in several human diseases, it is important to determine the extent to which modulators of autophagy also modify inflammatory or immune pathways and whether it is possible to modulate a subset of these pathways selectively.
View Article and Find Full Text PDFBackground & Aims: Intestinal epithelial cells aid in mucosal defense by providing a physical barrier against entry of pathogenic bacteria and secreting antimicrobial peptides (AMPs). Autophagy is an important component of immune homeostasis. However, little is known about its role in specific cell types during bacterial infection in vivo.
View Article and Find Full Text PDFStressors ranging from nutrient deprivation to immune signaling can induce the degradation of cytoplasmic material by a process known as autophagy. Increasingly, research on autophagy has begun to focus on its role in inflammation and the immune response. Autophagy acts as an immune effector that mediates pathogen clearance.
View Article and Find Full Text PDFSmall molecules are important not only as therapeutics to treat disease but also as chemical tools to probe complex biological processes. The discovery of novel bioactive small molecules has largely been catalyzed by screening diverse chemical libraries for alterations in specific activities in pure proteins assays or in generating cell-based phenotypes. New approaches are needed to close the vast gap between the ability to study either single proteins or whole cellular processes.
View Article and Find Full Text PDFWe report the discovery of small molecules that target the Rho pathway, which is a central regulator of cytokinesis--the final step in cell division. We have developed a way of targeting a small molecule screen toward a specific pathway, which should be widely applicable to the investigation of any signaling pathway. In a chemical genetic variant of a classical modifier screen, we used RNA interference (RNAi) to sensitize cells and identified small molecules that suppressed or enhanced the RNAi phenotype.
View Article and Find Full Text PDFCytokinesis is the last step in the cell cycle, where daughter cells finally separate. It is precisely regulated in both time and space to ensure that each daughter cell receives an equal share of DNA and other cellular materials. Chemical biology approaches have been used very successfully to study the mechanism of cytokinesis.
View Article and Find Full Text PDFMany biological pathways were first uncovered by identifying mutants with visible phenotypes and by scoring every sample in a screen via tedious and subjective visual inspection. Now, automated image analysis can effectively score many phenotypes. In practical application, customizing an image-analysis algorithm or finding a sufficient number of example cells to train a machine learning algorithm can be infeasible, particularly when positive control samples are not available and the phenotype of interest is rare.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2006
An important role of IgG antibodies in the defense against microbial infections is to promote the ingestion and killing of microbes by phagocytes. Here, we developed in vivo and in vitro approaches to ask whether opsonization of particles with IgG enhances intracellular targeting of lysosomes to phagosomes. To eliminate the effect of IgG on the ingestion process, cells were exposed to latex beads at 15-20 degrees C, which allows engulfment of both IgG-coated and uncoated beads but prevents the fusion of lysosomes with phagosomes.
View Article and Find Full Text PDFFusion of phagosomes with late endocytic organelles is essential for cellular digestion of microbial pathogens, senescent cells, apoptotic bodies, and retinal outer segment fragments. To further elucidate the biochemistry of the targeting process, we developed a scintillation proximity assay to study the stepwise association of lysosomes and phagosomes in vitro. Incubation of tritium-labeled lysosomes with phagosomes containing scintillant latex beads led to light emission in a reaction requiring cytosol, ATP, and low Ca(2+) concentrations.
View Article and Find Full Text PDFIn the process of membrane biogenesis several dozen proteins must operate in precise concert to generate approximately 100 lipids at appropriate concentrations. To study the regulation of bilayer assembly in a cell cycle-independent manner, we have exploited the fact that phagocytes replenish membranes expended during particle engulfment in a rapid phase of lipid synthesis. In response to phagocytosis of latex beads, human embryonic kidney 293 cells synthesized cholesterol and phospholipids at amounts equivalent to the surface area of the internalized particles.
View Article and Find Full Text PDFCells acquire cholesterol in part by endocytosis of cholesteryl ester containing lipoproteins. In endosomes and lysosomes cholesteryl ester is hydrolyzed by acidic cholesteryl ester hydrolase producing cholesterol and fatty acids. Under certain pathological conditions, however, such as in atherosclerosis, excessive levels of cholesteryl ester accumulate in lysosomes for reasons that are poorly understood.
View Article and Find Full Text PDFA scintillation proximity assay has been developed to study the endosomal trafficking of radiolabeled cholesterol in living cells. Mouse macrophages were cultured in the presence of tritiated cholesterol and scintillant microspheres. Microspheres were taken up by phagocytosis and stored in phagolysosomes.
View Article and Find Full Text PDF