Publications by authors named "Adam B Barrett"

Recent findings have shown that psychedelics reliably enhance brain entropy (understood as neural signal diversity), and this effect has been associated with both acute and long-term psychological outcomes, such as personality changes. These findings are particularly intriguing, given that a decrease of brain entropy is a robust indicator of loss of consciousness (e.g.

View Article and Find Full Text PDF

The integrated information theory of consciousness (IIT) is divisive: while some believe it provides an unprecedentedly powerful approach to address the 'hard problem', others dismiss it on grounds that it is untestable. We argue that the appeal and applicability of IIT can be greatly widened if we distinguish two flavours of the theory: strong IIT, which identifies consciousness with specific properties associated with maxima of integrated information; and weak IIT, which tests pragmatic hypotheses relating aspects of consciousness to broader measures of information dynamics. We review challenges for strong IIT, explain how existing empirical findings are well explained by weak IIT without needing to commit to the entirety of strong IIT, and discuss the outlook for both flavours of IIT.

View Article and Find Full Text PDF

Emergence is a profound subject that straddles many scientific disciplines, including the formation of galaxies and how consciousness arises from the collective activity of neurons. Despite the broad interest that exists on this concept, the study of emergence has suffered from a lack of formalisms that could be used to guide discussions and advance theories. Here, we summarize, elaborate on, and extend a recent formal theory of causal emergence based on information decomposition, which is quantifiable and amenable to empirical testing.

View Article and Find Full Text PDF

The apparent dichotomy between information-processing and dynamical approaches to complexity science forces researchers to choose between two diverging sets of tools and explanations, creating conflict and often hindering scientific progress. Nonetheless, given the shared theoretical goals between both approaches, it is reasonable to conjecture the existence of underlying common signatures that capture interesting behavior in both dynamical and information-processing systems. Here, we argue that a pragmatic use of integrated information theory (IIT), originally conceived in theoretical neuroscience, can provide a potential unifying framework to study complexity in general multivariate systems.

View Article and Find Full Text PDF

When employing nonlinear methods to characterize complex systems, it is important to determine to what extent they are capturing genuine nonlinear phenomena that could not be assessed by simpler spectral methods. Specifically, we are concerned with the problem of quantifying spectral and phasic effects on an observed difference in a nonlinear feature between two systems (or two states of the same system). Here we derive, from a sequence of null models, a decomposition of the difference in an observable into spectral, phasic, and spectrum-phase interaction components.

View Article and Find Full Text PDF

The broad concept of emergence is instrumental in various of the most challenging open scientific questions-yet, few quantitative theories of what constitutes emergent phenomena have been proposed. This article introduces a formal theory of causal emergence in multivariate systems, which studies the relationship between the dynamics of parts of a system and macroscopic features of interest. Our theory provides a quantitative definition of downward causation, and introduces a complementary modality of emergent behaviour-which we refer to as causal decoupling.

View Article and Find Full Text PDF

Integrated Information Theory (IIT) is a prominent theory of consciousness that has at its centre measures that quantify the extent to which a system generates more information than the sum of its parts. While several candidate measures of integrated information (" Φ ") now exist, little is known about how they compare, especially in terms of their behaviour on non-trivial network models. In this article, we provide clear and intuitive descriptions of six distinct candidate measures.

View Article and Find Full Text PDF

Does disruption of prefrontal cortical activity using transcranial magnetic stimulation (TMS) impair visual metacognition? An initial study supporting this idea (Rounis, Maniscalco, Rothwell, Passingham, & Lau, 2010) motivated an attempted replication and extension (Bor, Schwartzman, Barrett, & Seth, 2017). Bor et al. failed to replicate the initial study, concluding that there was not good evidence that TMS to dorsolateral prefrontal cortex impairs visual metacognition.

View Article and Find Full Text PDF

Granger-Geweke causality (GGC) is a powerful and popular method for identifying directed functional ('causal') connectivity in neuroscience. In a recent paper, Stokes and Purdon (2017b) raise several concerns about its use. They make two primary claims: (1) that GGC estimates may be severely biased or of high variance, and (2) that GGC fails to reveal the full structural/causal mechanisms of a system.

View Article and Find Full Text PDF

Loss of consciousness can result from a wide range of causes, including natural sleep and pharmacologically induced anesthesia. Important insights might thus come from identifying neuronal mechanisms of loss and re-emergence of consciousness independent of a specific manipulation. Therefore, to seek neuronal signatures of loss of consciousness common to sleep and anesthesia we analyzed spontaneous electrophysiological activity recorded in two experiments.

View Article and Find Full Text PDF

What is the level of consciousness of the psychedelic state? Empirically, measures of neural signal diversity such as entropy and Lempel-Ziv (LZ) complexity score higher for wakeful rest than for states with lower conscious level like propofol-induced anesthesia. Here we compute these measures for spontaneous magnetoencephalographic (MEG) signals from humans during altered states of consciousness induced by three psychedelic substances: psilocybin, ketamine and LSD. For all three, we find reliably higher spontaneous signal diversity, even when controlling for spectral changes.

View Article and Find Full Text PDF

Neuroimaging studies commonly associate dorsolateral prefrontal cortex (DLPFC) and posterior parietal cortex with conscious perception. However, such studies only investigate correlation, rather than causation. In addition, many studies conflate objective performance with subjective awareness.

View Article and Find Full Text PDF

Key to understanding the neuronal basis of consciousness is the characterization of the neural signatures of changes in level of consciousness during sleep. Here we analysed three measures of dynamical complexity on spontaneous depth electrode recordings from 10 epilepsy patients during wakeful rest (WR) and different stages of sleep: (i) Lempel-Ziv complexity, which is derived from how compressible the data are; (ii) amplitude coalition entropy, which measures the variability over time of the set of channels active above a threshold; (iii) synchrony coalition entropy, which measures the variability over time of the set of synchronous channels. When computed across sets of channels that are broadly distributed across multiple brain regions, all three measures decreased substantially in all participants during early-night non-rapid eye movement (NREM) sleep.

View Article and Find Full Text PDF

To fully characterize the information that two source variables carry about a third target variable, one must decompose the total information into redundant, unique, and synergistic components, i.e., obtain a partial information decomposition (PID).

View Article and Find Full Text PDF

Interoception refers to the sensing of internal bodily changes. Interoception interacts with cognition and emotion, making measurement of individual differences in interoceptive ability broadly relevant to neuropsychology. However, inconsistency in how interoception is defined and quantified led to a three-dimensional model.

View Article and Find Full Text PDF

Blindsight and other examples of unconscious knowledge and perception demonstrate dissociations between judgment accuracy and metacognition: Studies reveal that participants' judgment accuracy can be above chance while their confidence ratings fail to discriminate right from wrong answers. Here, we demonstrated the opposite dissociation: a reliable relationship between confidence and judgment accuracy (demonstrating metacognition) despite judgment accuracy being no better than chance. We evaluated the judgments of 450 participants who completed an AGL task.

View Article and Find Full Text PDF

Investigation of synesthesia phenomenology in adults is needed to constrain accounts of developmental trajectories of this trait. We report an extended phenomenological investigation of sequence-space synesthesia in a single case (AB). We used the Elicitation Interview (EI) method to facilitate repeated exploration of AB's synesthetic experience.

View Article and Find Full Text PDF

To truly eliminate Cartesian ghosts from the science of consciousness, we must describe consciousness as an aspect of the physical. Integrated Information Theory states that consciousness arises from intrinsic information generated by dynamical systems; however existing formulations of this theory are not applicable to standard models of fundamental physical entities. Modern physics has shown that fields are fundamental entities, and in particular that the electromagnetic field is fundamental.

View Article and Find Full Text PDF

The capacity to attend to multiple objects in the visual field is limited. However, introspectively, people feel that they see the whole visual world at once. Some scholars suggest that this introspective feeling is based on short-lived sensory memory representations, whereas others argue that the feeling of seeing more than can be attended to is illusory.

View Article and Find Full Text PDF

Analyzing metacognition, specifically knowledge of accuracy of internal perceptual, memorial, or other knowledge states, is vital for many strands of psychology, including determining the accuracy of feelings of knowing and discriminating conscious from unconscious cognition. Quantifying metacognitive sensitivity is however more challenging than quantifying basic stimulus sensitivity. Under popular signal-detection theory (SDT) models for stimulus classification tasks, approaches based on Type II receiver-operating characteristic (ROC) curves or Type II d-prime risk confounding metacognition with response biases in either the Type I (classification) or Type II (metacognitive) tasks.

View Article and Find Full Text PDF

Mental functions are influenced by states of physiological arousal. Afferent neural activity from arterial baroreceptors at systole conveys the strength and timing of individual heartbeats to the brain. We presented words under limited attentional resources time-locked to different phases of the cardiac cycle, to test a hypothesis that natural baroreceptor stimulation influences detection and subsequent memory of words.

View Article and Find Full Text PDF