Publications by authors named "Adam Arkin"

Spirulina is the common name for the edible, nonheterocystous, filamentous cyanobacterium Arthrospira platensis that is grown industrially as a food supplement, animal feedstock, and pigment source. Although there are many applications for engineering this organism, until recently no genetic tools or reproducible transformation methods have been published. While recent work showed the production of a diversity of proteins in A.

View Article and Find Full Text PDF

Our ability to predict, control, or design biological function is fundamentally limited by poorly annotated gene function. This can be particularly challenging in non-model systems. Accordingly, there is motivation for new high-throughput methods for accurate functional annotation.

View Article and Find Full Text PDF

As nuclear technology evolves in response to increased demand for diversification and decarbonization of the energy sector, new and innovative approaches are needed to effectively identify and deter the proliferation of nuclear arms, while ensuring safe development of global nuclear energy resources. Preventing the use of nuclear material and technology for unsanctioned development of nuclear weapons has been a long-standing challenge for the International Atomic Energy Agency and signatories of the Treaty on the Non-Proliferation of Nuclear Weapons. Environmental swipe sampling has proven to be an effective technique for characterizing clandestine proliferation activities within and around known locations of nuclear facilities and sites.

View Article and Find Full Text PDF

Food production and pharmaceutical synthesis are posited as essential biotechnologies for facilitating human exploration beyond Earth. These technologies not only offer critical green space and food agency to astronauts but also promise to minimize mass and volume requirements through scalable, modular agriculture within closed-loop systems, offering an advantage over traditional bring-along strategies. Despite these benefits, the prevalent model for evaluating such systems exhibits significant limitations.

View Article and Find Full Text PDF

Many factors contribute to the ability of a microbial species to persist when encountering complexly contaminated environments, including time of exposure, the nature and concentration of contaminants, availability of nutritional resources, and possession of a combination of appropriate molecular mechanisms needed for survival. Herein we sought to identify genes that are most important for survival of Gram-negative Enterobacteriaceae in contaminated groundwater environments containing high concentrations of nitrate and metals using the metal-tolerant Oak Ridge Reservation isolate, Pantoea sp. MT58 (MT58).

View Article and Find Full Text PDF

Automated annotations of protein functions are error-prone because of our lack of knowledge of protein functions. For example, it is often impossible to predict the correct substrate for an enzyme or a transporter. Furthermore, much of the knowledge that we do have about the functions of proteins is missing from the underlying databases.

View Article and Find Full Text PDF

Archaea are widespread in the environment and play fundamental roles in diverse ecosystems; however, characterization of their unique biology requires advanced tools. This is particularly challenging when characterizing gene function. Here, we generate randomly barcoded transposon libraries in the model methanogenic archaeon and use high-throughput growth methods to conduct fitness assays (RB-TnSeq) across over 100 unique growth conditions.

View Article and Find Full Text PDF

Biofilms aid bacterial adhesion to surfaces via direct and indirect mechanisms, and formation of biofilms is considered as an important strategy for adaptation and survival in suboptimal environmental conditions. However, the molecular underpinnings of biofilm formation in subsurface sediment/groundwater ecosystems where microorganisms often experience fluctuations in nutrient input, pH, and nitrate or metal concentrations are underexplored. We examined biofilm formation under different nutrient, pH, metal, and nitrate regimens of 16 Rhodanobacter strains isolated from subsurface groundwater wells spanning diverse levels of pH (3.

View Article and Find Full Text PDF

A mechanistic understanding of host-microbe interactions in the gut microbiome is hindered by poorly annotated bacterial genomes. While functional genomics can generate large gene-to-phenotype datasets to accelerate functional discovery, their applications to study gut anaerobes have been limited. For instance, most gain-of-function screens of gut-derived genes have been performed in Escherichia coli and assayed in a small number of conditions.

View Article and Find Full Text PDF

Mobile genetic elements (MGEs) like plasmids, viruses, and transposable elements can provide fitness benefits to their hosts for survival in the presence of environmental stressors. Heavy metal resistance genes (HMRGs) are frequently observed on MGEs, suggesting that MGEs may be an important driver of adaptive evolution in environments contaminated with heavy metals. Here, we report the meta-mobilome of the heavy metal-contaminated regions of the Oak Ridge Reservation subsurface.

View Article and Find Full Text PDF

Castellaniella species have been isolated from a variety of mixed-waste environments including the nitrate and multiple metal-contaminated subsurface at the Oak Ridge Reservation (ORR). Previous studies examining microbial community composition and nitrate removal at ORR during biostimulation efforts reported increased abundances of members of the Castellaniella genus concurrent with increased denitrification rates. Thus, we asked how genomic and abiotic factors control the Castellaniella biogeography at the site to understand how these factors may influence nitrate transformation in an anthropogenically impacted setting.

View Article and Find Full Text PDF

The sources and sinks of nitrous oxide, as control emissions to the atmosphere, are generally poorly constrained for most environmental systems. Initial depth-resolved analysis of nitrous oxide flux from observation wells and the proximal surface within a nitrate contaminated aquifer system revealed high subsurface production but little escape from the surface. To better understand the environmental controls of production and emission at this site, we used a combination of isotopic, geochemical, and molecular analyses to show that chemodenitrification and bacterial denitrification are major sources of nitrous oxide in this subsurface, where low DO, low pH, and high nitrate are correlated with significant nitrous oxide production.

View Article and Find Full Text PDF

Genome sequencing has revealed an incredible diversity of bacteria and archaea, but there are no fast and convenient tools for browsing across these genomes. It is cumbersome to view the prevalence of homologs for a protein of interest, or the gene neighborhoods of those homologs, across the diversity of the prokaryotes. We developed a web-based tool, fast.

View Article and Find Full Text PDF

The integration of biology and spacefaring has led to the development of three interrelated fields: Astrobiology, Bioastronautics, and Space Bioprocess Engineering. Astrobiology is concerned with the study of the origin, evolution, distribution, and future of life in the universe, while Bioastronautics focuses on the effects of spaceflight on biological systems, including human physiology and psychology. Space Bioprocess Engineering, on the other hand, deals with the design, deployment, and management of biotechnology for human exploration.

View Article and Find Full Text PDF

Community assembly describes how different ecological processes shape microbial community composition and structure. How environmental factors impact community assembly remains elusive. Here we sampled microbial communities and >200 biogeochemical variables in groundwater at the Oak Ridge Field Research Center, a former nuclear waste disposal site, and developed a theoretical framework to conceptualize the relationships between community assembly processes and environmental stresses.

View Article and Find Full Text PDF

Microbial communities have evolved to colonize all ecosystems of the planet, from the deep sea to the human gut. Microbes survive by sensing, responding, and adapting to immediate environmental cues. This process is driven by signal transduction proteins such as histidine kinases, which use their sensing domains to bind or otherwise detect environmental cues and "transduce" signals to adjust internal processes.

View Article and Find Full Text PDF

Phages are one of the key ecological drivers of microbial community dynamics, function, and evolution. Despite their importance in bacterial ecology and evolutionary processes, phage genes are poorly characterized, hampering their usage in a variety of biotechnological applications. Methods to characterize such genes, even those critical to the phage life cycle, are labor intensive and are generally phage specific.

View Article and Find Full Text PDF

The Escherichia coli genome-scale metabolic model (GEM) is an exemplar systems biology model for the simulation of cellular metabolism. Experimental validation of model predictions is essential to pinpoint uncertainty and ensure continued development of accurate models. Here, we quantified the accuracy of four subsequent E.

View Article and Find Full Text PDF

Environmental contamination constrains microbial communities impacting diversity and total metabolic activity. The former S-3 Ponds contamination site at Oak Ridge Reservation (ORR), TN, has elevated concentrations of nitric acid and multiple metals from decades of processing nuclear material. To determine the nature of the metal contamination in the sediment, a three-step sequential chemical extraction (BCR) was performed on sediment segments from a core located upgradient (EB271, non-contaminated) and one downgradient (EB106, contaminated) of the S-3 Ponds.

View Article and Find Full Text PDF

Species of bacteria from the genus Cupriavidus are known, in part, for their ability to produce high amounts of poly-hydroxybutyrate (PHB) making them attractive candidates for bioplastic production. The native synthesis of PHB occurs during periods of metabolic stress, and the process regulating the initiation of PHB accumulation in these organisms is not fully understood. Screening an RB-TnSeq transposon library of Cupriavidus basilensis 4G11 allowed us to identify two genes of an apparent, uncharacterized two-component system, which when omitted from the genome enable increased PHB productivity in balanced, nonstress growth conditions.

View Article and Find Full Text PDF

Lytic phages can be potent and selective inhibitors of microbial growth and can have profound impacts on microbiome composition and function. However, there is uncertainty about the biogeochemical conditions under which phage predation modulates microbial ecosystem function, particularly in terrestrial systems. Ionic strength is critical for infection of bacteria by many phages, but quantitative data is limited on the ion thresholds for phage infection that can be compared with environmental ion concentrations.

View Article and Find Full Text PDF

Microbial assembly and metabolic potential in the subsurface critical zone (SCZ) are substantially impacted by subsurface geochemistry and hydrogeology, selecting for microbes distinct from those in surficial soils. In this study, we integrated metagenomics and geochemistry to elucidate how microbial composition and metabolic potential are shaped and impacted by vertical variations in geochemistry and hydrogeology in terrestrial subsurface sediment. A sediment core from an uncontaminated, pristine well at Oak Ridge Field Research Center in Oak Ridge, Tennessee, including the shallow subsurface, vadose zone, capillary fringe, and saturated zone, was used in this study.

View Article and Find Full Text PDF

As renewed interest in human space-exploration intensifies, a coherent and modernized strategy for mission design and planning has become increasingly crucial. Biotechnology has emerged as a promising approach to increase resilience, flexibility, and efficiency of missions, by virtue of its ability to effectively utilize in situ resources and reclaim resources from waste streams. Here we outline four primary mission-classes on Moon and Mars that drive a staged and accretive biomanufacturing strategy.

View Article and Find Full Text PDF

Sulfate-reducing bacteria (SRB) are obligate anaerobes that can couple their growth to the reduction of sulfate. Despite the importance of SRB to global nutrient cycles and their damage to the petroleum industry, our molecular understanding of their physiology remains limited. To systematically provide new insights into SRB biology, we generated a randomly barcoded transposon mutant library in the model SRB Hildenborough (DvH) and used this genome-wide resource to assay the importance of its genes under a range of metabolic and stress conditions.

View Article and Find Full Text PDF

Background: Intracellular biomacromolecules, such as industrial enzymes and biopolymers, represent an important class of bio-derived products obtained from bacterial hosts. A common key step in the downstream separation of these biomolecules is lysis of the bacterial cell wall to effect release of cytoplasmic contents. Cell lysis is typically achieved either through mechanical disruption or reagent-based methods, which introduce issues of energy demand, material needs, high costs, and scaling problems.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session9ug32372mdu3r8mf06vjgue5s5th8bu4): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once