Publications by authors named "Adam Akram"

Background: Some non-pathogenic rhizobacteria called Plant Growth Promoting Rhizobacteria (PGPR) possess the capacity to induce in plant defense mechanisms effective against pathogens. Precedent studies showed the ability of Pseudomonas putida BTP1 to induce PGPR-mediated resistance, termed ISR (Induced Systemic Resistance), in different plant species. Despite extensive works, molecular defense mechanisms involved in ISR are less well understood that in the case of pathogen induced systemic acquired resistance.

View Article and Find Full Text PDF

Background: Previous studies showed the ability of Pseudomonas putida strain BTP1 to promote induced systemic resistance (ISR) in different host plants. Since ISR is long-lasting and not conducive for development of resistance of the targeted pathogen, this phenomenon can take part of disease control strategies. However, in spite of the numerous examples of ISR induced by PGPR in plants, only a few biochemical studies have associated the protective effect with specific host metabolic changes.

View Article and Find Full Text PDF

The biological control bacterium Pseudomonas putida BTP1 exerts its protective effect mostly by inducing an enhanced state of resistance in the host plant against pathogen attack [induced systemic resistance (ISR)]. We previously reported that a specific compound derived from benzylamine may be involved in the elicitation of the ISR phenomenon by this Pseudomonas strain. In this article, we provide further information about the N,N-dimethyl-N-tetradecyl-N-benzylammonium structure of this determinant for ISR and show that the benzylamine moiety may be important for perception of the molecule by root cells of different plant species.

View Article and Find Full Text PDF

Multiple strains of Bacillus spp. were demonstrated to stimulate plant defence responses. However, very little is known about the nature of molecular determinants secreted by these Gram-positive bacteria that are responsible for the elicitation of the induced systemic resistance (ISR) phenomenon.

View Article and Find Full Text PDF

A Bacillus subtilis derivative was obtained from strain ATCC 6633 by replacement of the native promoter of the mycosubtilin operon by a constitutive promoter originating from the replication gene repU of the Staphylococcus aureus plasmid pUB110. The recombinant strain, designated BBG100, produced up to 15-fold more mycosubtilin than the wild type produced. The overproducing phenotype was related to enhancement of the antagonistic activities against several yeasts and pathogenic fungi.

View Article and Find Full Text PDF