Publications by authors named "Adam A Nguyen"

Article Synopsis
  • Photosynthesis in the ocean is mainly done by tiny organisms called phytoplankton, and one important type is Synechococcus, which is a type of cyanobacterium.
  • Synechococcus can change its pigments to capture light better depending on whether the light is blue or green, a process known as Type 4 chromatic acclimation (CA4).
  • This CA4 process helps them thrive in different light conditions and is found in over 40% of Synechococcus in the ocean, especially in colder areas and deeper waters.
View Article and Find Full Text PDF

Marine cyanobacteria owe their ubiquity in part to the wide pigment diversity of their light-harvesting complexes. In open ocean waters, cells predominantly possess sophisticated antennae with rods composed of phycocyanin and two types of phycoerythrins (PEI and PEII). Some strains are specialized for harvesting either green or blue light, while others can dynamically modify their light absorption spectrum to match the dominant ambient color.

View Article and Find Full Text PDF

Bilin lyases are enzymes which ligate linear tetrapyrrole chromophores to specific cysteine residues on light harvesting proteins present in cyanobacteria and red algae. The lyases responsible for chromophorylating the light harvesting protein phycoerythrin (PE) have not been fully characterized. In this study, we explore the role of CpeT, a putative bilin lyase, in the biosynthesis of PE in the cyanobacterium Fremyella diplosiphon.

View Article and Find Full Text PDF

Marine , a globally important group of cyanobacteria, thrives in various light niches in part due to its varied photosynthetic light-harvesting pigments. Many strains use a process known as chromatic acclimation to optimize the ratio of two chromophores, green-light-absorbing phycoerythrobilin (PEB) and blue-light-absorbing phycourobilin (PUB), within their light-harvesting complexes. A full mechanistic understanding of how cells tune their PEB to PUB ratio during chromatic acclimation has not yet been obtained.

View Article and Find Full Text PDF

Marine has successfully adapted to environments with different light colors, which likely contributes to this genus being the second most abundant group of microorganisms worldwide. Populations of that grow in deep, blue ocean waters contain large amounts of the blue-light absorbing chromophore phycourobilin (PUB) in their light harvesting complexes (phycobilisomes). Here, we show that all strains adapted to blue light possess a gene called .

View Article and Find Full Text PDF

The evolutionary success of marine Synechococcus, the second-most abundant phototrophic group in the marine environment, is partly attributable to this group's ability to use the entire visible spectrum of light for photosynthesis. This group possesses a remarkable diversity of light-harvesting pigments, and most of the group's members are orange and pink because of their use of phycourobilin and phycoerythrobilin chromophores, which are attached to antennae proteins called phycoerythrins. Many strains can alter phycoerythrin chromophore ratios to optimize photon capture in changing blue-green environments using type IV chromatic acclimation (CA4).

View Article and Find Full Text PDF