Publications by authors named "Adam A Bleckert"

Neurons in the developing brain undergo extensive structural refinement as nascent circuits adopt their mature form. This physical transformation of neurons is facilitated by the engulfment and degradation of axonal branches and synapses by surrounding glial cells, including microglia and astrocytes. However, the small size of phagocytic organelles and the complex, highly ramified morphology of glia have made it difficult to define the contribution of these and other glial cell types to this crucial process.

View Article and Find Full Text PDF

Learning from experience depends at least in part on changes in neuronal connections. We present the largest map of connectivity to date between cortical neurons of a defined type (layer 2/3 [L2/3] pyramidal cells in mouse primary visual cortex), which was enabled by automated analysis of serial section electron microscopy images with improved handling of image defects (250 × 140 × 90 μm volume). We used the map to identify constraints on the learning algorithms employed by the cortex.

View Article and Find Full Text PDF
Article Synopsis
  • A semi-automated reconstruction of the L2/3 region of the mouse primary visual cortex was created using electron microscopy images, capturing various cell types and structures important for understanding visual processing.
  • The data includes visual response characteristics of pyramidal cells and is available for public access, along with interactive tools for analysis.
  • Research highlights how the organization of mitochondria and synapses relates to cell location, while predicting connectivity patterns in pyramidal cells correlates with their visual response strength and reliability.
View Article and Find Full Text PDF