Publications by authors named "Adal Sabri"

Antibody-opsonized bacteria interact with Fc receptors in macrophages and trigger signaling cascades, which induce phagocytosis. The signaling pathways ultimately lead to actin polymerization that induces the protrusion of the membrane around the bacterium until it is completely engulfed. Although many proteins involved in the phagocytic cup formation have already been identified, it is still unclear how far the initial stimulus created by the bacterium-cell contact propagates in the cell.

View Article and Find Full Text PDF

A panoply of new tools for tracking single particles and molecules has led to an explosion of experimental data, leading to novel insights into physical properties of living matter governing cellular development and function, health and disease. In this Perspective, we present tools to investigate the dynamics and mechanics of living systems from the molecular to cellular scale single-particle techniques. In particular, we focus on methods to measure, interpret, and analyse complex data sets that are associated with forces, materials properties, transport, and emergent organisation phenomena within biological and soft-matter systems.

View Article and Find Full Text PDF

The shape of kinetoplastids, such as , is precisely defined during the stages of the life cycle and governed by a stable subpellicular microtubule cytoskeleton. During the cell cycle and transitions between life cycle stages, this stability has to transiently give way to a dynamic behaviour to enable cell division and morphological rearrangements. How these opposing requirements of the cytoskeleton are regulated is poorly understood.

View Article and Find Full Text PDF

Diffusion of tracer particles in the cytoplasm of mammalian cells is often anomalous with a marked heterogeneity even within individual particle trajectories. Despite considerable efforts, the mechanisms behind these observations have remained largely elusive. To tackle this problem, we performed extensive single-particle tracking experiments on quantum dots in the cytoplasm of living mammalian cells at varying conditions.

View Article and Find Full Text PDF