We use viral kinetic models fitted to viral load data from studies to explain why the SARS-CoV-2 Omicron variant replicates faster than the Delta variant in nasal cells, but slower than Delta in lung cells, which could explain Omicron's higher transmission potential and lower severity. We find that in both nasal and lung cells, viral infectivity is higher for Omicron but the virus production rate is higher for Delta, with an estimated approximately 200-fold increase in infectivity and 100-fold decrease in virus production when comparing Omicron with Delta in nasal cells. However, the differences are unequal between cell types, and ultimately lead to the basic reproduction number and growth rate being higher for Omicron in nasal cells, and higher for Delta in lung cells.
View Article and Find Full Text PDFRelationships between viral load, severity of illness, and transmissibility of virus are fundamental to understanding pathogenesis and devising better therapeutic and prevention strategies for COVID-19. Here we present within-host modelling of viral load dynamics observed in the upper respiratory tract (URT), drawing upon 2172 serial measurements from 605 subjects, collected from 17 different studies. We developed a mechanistic model to describe viral load dynamics and host response and contrast this with simpler mixed-effects regression analysis of peak viral load and its subsequent decline.
View Article and Find Full Text PDFFavipiravir is a nucleoside analogue which has been licensed to treat influenza in the event of a new pandemic. We previously described a favipiravir resistant influenza A virus generated by in vitro passage in presence of drug with two mutations: K229R in PB1, which conferred resistance at a cost to polymerase activity, and P653L in PA, which compensated for the cost of polymerase activity. However, the clinical relevance of these mutations is unclear as the mutations have not been found in natural isolates and it is unknown whether viruses harbouring these mutations would replicate or transmit in vivo.
View Article and Find Full Text PDFEarly in the COVID-19 pandemic, predictions of international outbreaks were largely based on imported cases from Wuhan, China, potentially missing imports from other cities. We provide a method, combining daily COVID-19 prevalence and flight passenger volume, to estimate importations from 18 Chinese cities to 43 international destinations, including 26 in Africa. Global case importations from China in early January came primarily from Wuhan, but the inferred source shifted to other cities in mid-February, especially for importations to African destinations.
View Article and Find Full Text PDFWhen analysing in vitro data, growth kinetics of influenza virus strains are often compared by computing their growth rates, which are sometimes used as proxies for fitness. However, analogous to mathematical models for epidemics, the growth rate can be defined as a function of mechanistic traits: the basic reproduction number (the average number of cells each infected cell infects) and the mean generation time (the average length of a replication cycle). Fitting a model to previously published and newly generated data from experiments in human lung cells, we compared estimates of growth rate, reproduction number and generation time for six influenza A strains.
View Article and Find Full Text PDFModern data and computational resources, coupled with algorithmic and theoretical advances to exploit these, allow disease dynamic models to be parameterised with increasing detail and accuracy. While this enhances models' usefulness in prediction and policy, major challenges remain. In particular, lack of identifiability of a model's parameters may limit the usefulness of the model.
View Article and Find Full Text PDFEarly in the COVID-19 pandemic, when cases were predominantly reported in the city of Wuhan, China, local outbreaks in Europe, North America, and Asia were largely predicted from imported cases on flights from Wuhan, potentially missing imports from other key source cities. Here, we account for importations from Wuhan and from other cities in China, combining COVID-19 prevalence estimates in 18 Chinese cities with estimates of flight passenger volume to predict for each day between early December 2019 to late February 2020 the number of cases exported from China. We predict that the main source of global case importation in early January was Wuhan, but due to the Wuhan lockdown and the rapid spread of the virus, the main source of case importation from mid February became Chinese cities outside of Wuhan.
View Article and Find Full Text PDFLaboratory models are often used to understand the interaction of related pathogens via host immunity. For example, recent experiments where ferrets were exposed to two influenza strains within a short period of time have shown how the effects of cross-immunity vary with the time between exposures and the specific strains used. On the other hand, studies of the workings of different arms of the immune response, and their relative importance, typically use experiments involving a single infection.
View Article and Find Full Text PDFAssessing the risk of disease spread between communities is important in our highly connected modern world. However, the impact of disease- and population-specific factors on the time taken for an epidemic to spread between communities, as well as the impact of stochastic disease dynamics on this spreading time, are not well understood. In this study, we model the spread of an acute infection between two communities ('patches') using a susceptible-infectious-removed (SIR) metapopulation model.
View Article and Find Full Text PDFMyriad experiments have identified an important role for CD8 T cell response mechanisms in determining recovery from influenza A virus infection. Animal models of influenza infection further implicate multiple elements of the immune response in defining the dynamical characteristics of viral infection. To date, influenza virus models, while capturing particular aspects of the natural infection history, have been unable to reproduce the full gamut of observed viral kinetic behavior in a single coherent framework.
View Article and Find Full Text PDFThe cellular adaptive immune response plays a key role in resolving influenza infection. Experiments where individuals are successively infected with different strains within a short timeframe provide insight into the underlying viral dynamics and the role of a cross-reactive immune response in resolving an acute infection. We construct a mathematical model of within-host influenza viral dynamics including three possible factors which determine the strength of the cross-reactive cellular adaptive immune response: the initial naive T cell number, the avidity of the interaction between T cells and the epitopes presented by infected cells, and the epitope abundance per infected cell.
View Article and Find Full Text PDFNot every exposure to virus establishes infection in the host; instead, the small amount of initial virus could become extinct due to stochastic events. Different diseases and routes of transmission have a different average number of exposures required to establish an infection. Furthermore, the host immune response and antiviral treatment affect not only the time course of the viral load provided infection occurs, but can prevent infection altogether by increasing the extinction probability.
View Article and Find Full Text PDFInfluenza is an infectious disease that primarily attacks the respiratory system. Innate immunity provides both a very early defense to influenza virus invasion and an effective control of viral growth. Previous modelling studies of virus-innate immune response interactions have focused on infection with a single virus and, while improving our understanding of viral and immune dynamics, have been unable to effectively evaluate the relative feasibility of different hypothesised mechanisms of antiviral immunity.
View Article and Find Full Text PDFBackground: Epidemiological studies suggest that, following infection with influenza virus, there is a short period during which a host experiences a lower susceptibility to infection with other influenza viruses. This viral interference appears to be independent of any antigenic similarities between the viruses. We used the ferret model of human influenza to systematically investigate viral interference.
View Article and Find Full Text PDFWe present a deterministic approach to the ptychographic retrieval of the wave at the exit surface of a specimen of condensed matter illuminated by X-rays. The method is based on the solution of an overdetermined set of linear equations, and is robust to measurement noise. The set of linear equations is efficiently solved using the conjugate gradient least-squares method implemented using fast Fourier transforms.
View Article and Find Full Text PDF