Publications by authors named "Ada Sacca"

Perfluorinated sulfonic acid (PFSA) polymers such as Nafion are widely used for both electrolyte membranes and ionomers in the catalytic layer of membrane-electrode assemblies (MEAs) because of their high protonic conductivity, σ, as well as chemical and thermal stability. The use of PFSA polymers with shorter side chains and lower equivalent weight (EW) than Nafion, such as Aquivion PFSA ionomers, is a valid approach to improve fuel cell performance and stability under drastic operative conditions such as those related to automotive applications. In this context, it is necessary to optimize the composition of the catalytic ink, according to the different ionomer characteristics.

View Article and Find Full Text PDF

Polymer Electrolyte Fuel Cells (PEFCs) are one of the most promising power generation systems. The main component of a PEFC is the proton exchange membrane (PEM), object of intense research to improve the efficiency of the cell. The most commonly and commercially successful used PEMs are Nafion™ perfluorosulfonic acid (PFSA) membranes, taken as a reference for the development of innovative and alternative membranes.

View Article and Find Full Text PDF

Chitosan-sulfated titania composite membranes were prepared, characterized, and evaluated for potential application as polymer electrolyte membranes. To improve the chemical stability, the membranes were cross-linked using sulfuric acid, pentasodium triphosphate, and epoxy-terminated polydimethylsiloxane. Differences in membranes' structure, thickness, morphology, mechanical, and thermal properties prior and after cross-linking reactions were evaluated.

View Article and Find Full Text PDF

A series of quaternary ammonium-functionalized polysulfones were successfully synthesized using a chloromethylation two-step method. In particular, triethylammonium and trimethylammonium polysulfone derivatives with different functionalization degrees from 60% to 150% were investigated. NMR spectroscopic techniques were used to determine the degree of functionalization of the polymers.

View Article and Find Full Text PDF

In order to help the introduction on the automotive market of polymer electrolyte fuel cells (PEFCs), it is mandatory to develop highly performing and stable catalysts. The main objective of this work is to investigate PtNi/C catalysts in a PEFC under low relative humidity and pressure conditions, more representative of automotive applications. Carbon supported PtNi nanoparticles were prepared by reduction of metal precursors with formic acid and successive thermal and leaching treatments.

View Article and Find Full Text PDF

The introduction of different reinforcement materials (yarns, fibrils, etc) into the membranes has been investigated with the aim of maintaining adequate membrane properties in terms of mechanical strength, good chemical stability, low swelling at critical temperatures and a stable electrochemical performance in PEFC. An innovative technique for the development of membranes is based on polymeric films containing polymeric nanofibres obtained through electrospinning. The electrospinning of Nafion blends with polyvinylpirrolidone (PVP) and polystyrene (PS) was investigated in this work.

View Article and Find Full Text PDF