Many marine species exhibit fine-scale population structure despite high mobility and a lack of physical barriers to dispersal, but the evolutionary drivers of differentiation in these systems are generally poorly understood. Here we investigate the potential role of habitat transitions and seasonal prey distributions on the evolution of population structure in the Indo-Pacific bottlenose dolphin, Tursiops aduncus, off South Africa's coast, using double-digest restriction-site associated DNA sequencing. Population structure was identified between the eastern and southern coasts and correlated with the habitat transition between the temperate Agulhas (southern) and subtropical Natal (eastern) Bioregions, suggesting differentiation driven by resource specializations.
View Article and Find Full Text PDFPhylogeographic inference has provided extensive insight into the relative roles of geographical isolation and ecological processes during evolutionary radiations. However, the importance of cross-lineage admixture in facilitating adaptive radiations is increasingly being recognised, and suggested as a main cause of phylogenetic uncertainty. In this study, we used a double digest RADseq protocol to provide a high resolution (~4 Million bp) nuclear phylogeny of the Delphininae.
View Article and Find Full Text PDFGlobally distributed, the bottlenose dolphin (Tursiops truncatus) is found in a range of offshore and coastal habitats. Using 15 microsatellite loci and mtDNA control region sequences, we investigated patterns of genetic differentiation among putative populations along the eastern US shoreline (the Indian River Lagoon, Florida, and Charleston Harbor, South Carolina) (microsatellite analyses: n = 125, mtDNA analyses: n = 132). We further utilized the mtDNA to compare these populations with those from the Northwest Atlantic, Gulf of Mexico, and Caribbean.
View Article and Find Full Text PDFUnderstanding the evolution of diversity and the resulting systematics in marine systems is confounded by the lack of clear boundaries in oceanic habitats, especially for highly mobile species like marine mammals. Dolphin populations and sibling species often show differentiation between coastal and offshore habitats, similar to the pelagic/littoral or benthic differentiation seen for some species of fish. Here we test the hypothesis that lineages within the polytypic genus Tursiops track past changes in the environment reflecting ecological drivers of evolution facilitated by habitat release.
View Article and Find Full Text PDFThe diversity of exon-2 (peptide-binding region) of the DQB1 locus (Class II, major histocompatibility complex, MHC) was investigated on an extended sample of populations of three focal cetacean species (two sibling delphinid species and another in the same family). We tested the hypothesis that dolphin populations with a worldwide distribution across different habitats and geographic regions will be under differential selective pressure by comparing DQB1 variation with variation at neutral markers and by investigating putative functional residues within the exon-2 sequence at the population level. Variation at the DQB1 locus was not correlated to neutral differentiation (assessed by comparison with microsatellite DNA markers), and overall F(ST) values were significantly lower for the MHC locus, consistent with expectations for balancing selection.
View Article and Find Full Text PDFBottlenose dolphins (Tursiops truncatus) are widely distributed and a high degree of morphometric and genetic differentiation has been found among both allopatric and parapatric populations. We analysed 145 samples along a contiguous distributional range from the Black Sea to the eastern North Atlantic for mitochondrial and nuclear genetic diversity, and found population structure with boundaries that coincided with transitions between habitat regions. These regions can be characterized by ocean floor topography, and oceanographic features such as surface salinity, productivity and temperature.
View Article and Find Full Text PDFBottlenose dolphins (Tursiops truncatus) have a world-wide distribution, and show morphotypic variation among regions. Distinctions between coastal and pelagic populations have been documented; however, regional patterns of differentiation had not been previously investigated in a wider geographic context. We analysed up to nine different populations from seven different areas of the world by mitochondrial DNA and microsatellite DNA markers, and found differentiation among all putative regional populations.
View Article and Find Full Text PDFIn the Mediterranean Sea, top predators, and particularly cetacean odontocetes, accumulate high concentrations of organochlorine contaminants and toxic metals, incurring high toxicological risk. In this paper we investigate the use of the skin biopsies as a non-lethal tool for evaluating toxicological hazard of organochlorines in Mediterranean cetaceans, presenting new data 10 years after the paper published by Fossi and co-workers [Mar. Poll.
View Article and Find Full Text PDF