Can we anticipate the emergence of the next pandemic antibiotic-resistant bacterial clone? Addressing such an ambitious question relies on our ability to comprehensively understand the ecological and epidemiological factors fostering the evolution of high-risk clones. Among these factors, the ability to persistently colonize and thrive in the human gut is crucial for most high-risk clones. Nonetheless, the causes and mechanisms facilitating successful gut colonization remain obscure.
View Article and Find Full Text PDFMajor antibiotic groups are losing effectiveness due to the uncontrollable spread of antimicrobial resistance (AMR) genes. Among these, β-lactam resistance genes -encoding β-lactamases- stand as the most common resistance mechanism in Enterobacterales due to their frequent association with mobile genetic elements. In this context, novel approaches that counter mobile AMR are urgently needed.
View Article and Find Full Text PDFMultidrug efflux pumps are among the main Pseudomonas aeruginosa antibiotic-resistance determinants. Besides, efflux pumps are also involved in other relevant activities of bacterial physiology, including the quorum sensing-mediated regulation of bacterial virulence. Nevertheless, despite the relevance of efflux pumps in bacterial physiology, their interconnection with bacterial metabolism remains obscure.
View Article and Find Full Text PDF