Introduction: During observation of the ambiguous Necker cube, our perception suddenly reverses between two about equally possible 3D interpretations. During passive observation, perceptual reversals seem to be sudden and spontaneous. A number of theoretical approaches postulate destabilization of neural representations as a pre-condition for reversals of ambiguous figures.
View Article and Find Full Text PDFIn studies of the visual system as well as in computer vision, the focus is often on contrast edges. However, the primate visual system contains a large number of cells that are insensitive to spatial contrast and, instead, respond to uniform homogeneous illumination of their visual field. The purpose of this information remains unclear.
View Article and Find Full Text PDFTransient oscillations in network activity upon sensory stimulation have been reported in different sensory areas of the brain. These evoked oscillations are the generic response of networks of excitatory and inhibitory neurons (EI-networks) to a transient external input. Recently, it has been shown that this resonance property of EI-networks can be exploited for communication in modular neuronal networks by enabling the transmission of sequences of synchronous spike volleys ('pulse packets'), despite the sparse and weak connectivity between the modules.
View Article and Find Full Text PDFThe cerebellum drives motor coordination and sequencing of actions at the millisecond timescale through adaptive control of cerebellar nuclear output. Cerebellar nuclei integrate high-frequency information from both the cerebellar cortex and the two main excitatory inputs of the cerebellum: the mossy fibers and the climbing fiber collaterals. However, how nuclear cells process rate and timing of inputs carried by these inputs is still debated.
View Article and Find Full Text PDFSpatio-temporal sequences of neuronal activity are observed in many brain regions in a variety of tasks and are thought to form the basis of meaningful behavior. However, mechanisms by which a neuronal network can generate spatio-temporal activity sequences have remained obscure. Existing models are biologically untenable because they either require manual embedding of a feedforward network within a random network or supervised learning to train the connectivity of a network to generate sequences.
View Article and Find Full Text PDFStriatal projection neurons, the medium spiny neurons (MSNs), play a crucial role in various motor and cognitive functions. MSNs express either D1- or D2-type dopamine receptors and initiate the direct-pathway (dMSNs) or indirect pathways (iMSNs) of the basal ganglia, respectively. dMSNs have been shown to receive more inhibition than iMSNs from intrastriatal sources.
View Article and Find Full Text PDFThe brain is organized as a network of highly specialized networks of spiking neurons. To exploit such a modular architecture for computation, the brain has to be able to regulate the flow of spiking activity between these specialized networks. In this Opinion article, we review various prominent mechanisms that may underlie communication between neuronal networks.
View Article and Find Full Text PDFMotor-cognitive accounts assume that the articulatory cortex is involved in language comprehension, but previous studies may have observed such an involvement as an artefact of experimental procedures. Here, we employed electrocorticography (ECoG) during natural, non-experimental behavior combined with electrocortical stimulation mapping to study the neural basis of real-life human verbal communication. We took advantage of ECoG's ability to capture high-gamma activity (70-350 Hz) as a spatially and temporally precise index of cortical activation during unconstrained, naturalistic speech production and perception conditions.
View Article and Find Full Text PDFPain associates both sensory and emotional aversive components, and often leads to anxiety and depression when it becomes chronic. Here, we characterized, in a mouse model, the long-term development of these sensory and aversive components as well as anxiodepressive-like consequences of neuropathic pain and determined their electrophysiological impact on the anterior cingulate cortex (ACC, cortical areas 24a/24b). We show that these symptoms of neuropathic pain evolve and recover in different time courses following nerve injury in male mice.
View Article and Find Full Text PDFBrief epochs of beta oscillations have been implicated in sensorimotor control in the basal ganglia of task-performing healthy animals. However, which neural processes underlie their generation and how they are affected by sensorimotor processing remains unclear. To determine the mechanisms underlying transient beta oscillations in the LFP, we combined computational modeling of the subthalamo-pallidal network for the generation of beta oscillations with realistic stimulation patterns derived from single-unit data recorded from different basal ganglia subregions in rats performing a cued choice task.
View Article and Find Full Text PDFThe striatum is the main input nucleus of the basal ganglia. Characterizing striatal activity dynamics is crucial to understanding mechanisms underlying action selection, initiation, and execution. Here, we studied the effects of spatial network connectivity on the spatiotemporal structure of striatal activity.
View Article and Find Full Text PDFObjective: Electric fields (EF) of approx. 0.2 V/m have been shown to be sufficiently strong to both modulate neuronal activity in the cerebral cortex and have measurable effects on cognitive performance.
View Article and Find Full Text PDFSpike patterns are among the most common electrophysiological descriptors of neuron types. Surprisingly, it is not clear how the diversity in firing patterns of the neurons in a network affects its activity dynamics. Here, we introduce the state-dependent stochastic bursting neuron model allowing for a change in its firing patterns independent of changes in its input-output firing rate relationship.
View Article and Find Full Text PDFHow neuronal activity of motor cortex is related to movement is a central topic in motor neuroscience. Motor-cortical single neurons are more closely related to hand movement velocity than speed, that is, the magnitude of the (directional) velocity vector. Recently, there is also increasing interest in the representation of movement parameters in neuronal population activity, such as reflected in the intracranial EEG (iEEG).
View Article and Find Full Text PDFPLoS Comput Biol
February 2016
There is a growing interest in developing novel brain stimulation methods to control disease-related aberrant neural activity and to address basic neuroscience questions. Conventional methods for manipulating brain activity rely on open-loop approaches that usually lead to excessive stimulation and, crucially, do not restore the original computations performed by the network. Thus, they are often accompanied by undesired side-effects.
View Article and Find Full Text PDFControllability and observability of complex systems are vital concepts in many fields of science. The network structure of the system plays a crucial role in determining its controllability and observability. Because most naturally occurring complex systems show dynamic changes in their network connectivity, it is important to understand how perturbations in the connectivity affect the controllability of the system.
View Article and Find Full Text PDFObjective: Brain-machine interfaces (BMI) are an emerging therapeutic option that can allow paralyzed patients to gain control over assistive technology devices (ATDs). BMI approaches can be broadly classified into invasive (based on intracranially implanted electrodes) and noninvasive (based on skin electrodes or extracorporeal sensors). Invasive BMIs have a favorable signal-to-noise ratio, and thus allow for the extraction of more information than noninvasive BMIs, but they are also associated with the risks related to neurosurgical device implantation.
View Article and Find Full Text PDFRecent analysis of evoked activity recorded across different brain regions and tasks revealed a marked decrease in noise correlations and trial-by-trial variability. Given the importance of correlations and variability for information processing within the rate coding paradigm, several mechanisms have been proposed to explain the reduction in these quantities despite an increase in firing rates. These models suggest that anatomical clusters and/or tightly balanced excitation-inhibition can generate intrinsic network dynamics that may exhibit a reduction in noise correlations and trial-by-trial variability when perturbed by an external input.
View Article and Find Full Text PDFPLoS Comput Biol
April 2015
A typical Go/No-Go decision is suggested to be implemented in the brain via the activation of the direct or indirect pathway in the basal ganglia. Medium spiny neurons (MSNs) in the striatum, receiving input from cortex and projecting to the direct and indirect pathways express D1 and D2 type dopamine receptors, respectively. Recently, it has become clear that the two types of MSNs markedly differ in their mutual and recurrent connectivities as well as feedforward inhibition from FSIs.
View Article and Find Full Text PDFCortical information processing at the cellular level has predominantly been studied in local networks, which are dominated by strong vertical connectivity between layers. However, recent studies suggest that the bulk of axons targeting pyramidal neurons most likely originate from outside this local range, emphasizing the importance of horizontal connections. We mapped a subset of these connections to L5B pyramidal neurons in rat somatosensory cortex with photostimulation, identifying intact projections up to a lateral distance of 2 mm.
View Article and Find Full Text PDFThe cortex processes stimuli through a distributed network of specialized brain areas. This processing requires mechanisms that can route neuronal activity across weakly connected cortical regions. Routing models proposed thus far are either limited to propagation of spiking activity across strongly connected networks or require distinct mechanisms that create local oscillations and establish their coherence between distant cortical areas.
View Article and Find Full Text PDF