Delhi, India, suffers from periods of very poor air quality, but little is known about the chemical production of secondary pollutants in this highly polluted environment. During the postmonsoon period in 2018, extremely high nighttime concentrations of NO (NO and NO) and volatile organic compounds (VOCs) were observed, with median NO mixing ratios of ∼200 ppbV (maximum of ∼700 ppbV). A detailed chemical box model constrained to a comprehensive suite of speciated VOC and NO measurements revealed very low nighttime concentrations of oxidants, NO, O, and OH, driven by high nighttime NO concentrations.
View Article and Find Full Text PDFOrganic aerosols, a major constituent of fine particulate mass in megacities, can be directly emitted or formed from secondary processing of biogenic and anthropogenic volatile organic compound emissions. The complexity of volatile organic compound emission sources, speciation and oxidation pathways leads to uncertainties in the key sources and chemistry leading to formation of organic aerosol in urban areas. Historically, online measurements of organic aerosol composition have been unable to resolve specific markers of volatile organic compound oxidation, while offline analysis of markers focus on a small proportion of organic aerosol and lack the time resolution to carry out detailed statistical analysis required to study the dynamic changes in aerosol sources and chemistry.
View Article and Find Full Text PDFRapid economic growth and development have exacerbated air quality problems across India, driven by many poorly understood pollution sources and understanding their relative importance remains critical to characterising the key drivers of air pollution. A comprehensive suite of measurements of 90 non-methane hydrocarbons (NMHCs) (C-C), including 12 speciated monoterpenes and higher molecular weight monoaromatics, were made at an urban site in Old Delhi during the pre-monsoon (28-May to 05-Jun 2018) and post-monsoon (11 to 27-Oct 2018) seasons using dual-channel gas chromatography (DC-GC-FID) and two-dimensional gas chromatography (GC×GC-FID). Significantly higher mixing ratios of NMHCs were measured during the post-monsoon campaign, with a mean night-time enhancement of around 6.
View Article and Find Full Text PDFSurface ozone is a major pollutant threatening public health, agricultural production and natural ecosystems. While measures to improve air quality in megacities such as Delhi are typically aimed at reducing levels of particulate matter (PM), ozone could become a greater threat if these measures focus on PM alone, as some air pollution mitigation steps can actually lead to an increase in surface ozone. A better understanding of the factors controlling ozone production in Delhi and the impact that PM mitigation measures have on ozone is therefore critical for improving air quality.
View Article and Find Full Text PDFJ Environ Sci (China)
September 2020
Vertical profiles of isoprene and monoterpenes were measured by a proton transfer reaction-time of flight-mass spectrometry (PTR-ToF-MS) at heights of 3, 15, 32, 64, and 102 m above the ground on the Institute of Atmospheric Physics (IAP) tower in central Beijing during the winter of 2016 and the summer of 2017. Isoprene mixing ratios were larger in summer due to much stronger local emissions whereas monoterpenes were lower in summer due largely to their consumption by much higher levels of ozone. Isoprene mixing ratios were the highest at the 32 m in summer (1.
View Article and Find Full Text PDFThe emissions of BVOCs from oilseed rape (Brassica napus), both when the plant is exposed to clean air and when it is fumigated with ozone at environmentally-relevant mixing ratios (ca. 135 ppbv), were measured under controlled laboratory conditions. Emissions of BVOCs were recorded from combined leaf and root chambers using a recently developed Selective Reagent Ionisation-Time of Flight-Mass Spectrometer (SRI-ToF-MS) enabling BVOC detection with high time and mass resolution, together with the ability to identify certain molecular functionality.
View Article and Find Full Text PDFThe rapid expansion in the number and use of new psychoactive substances presents a significant analytical challenge because highly sensitive instrumentation capable of detecting a broad range of chemical compounds in real-time with a low rate of false positives is required. A Selective Reagent Ionisation-Time of Flight-Mass Spectrometry (SRI-ToF-MS) instrument is capable of meeting all of these requirements. With its high mass resolution (up to /Δ of 8000), the application of variations in reduced electric field strength (/) and use of different reagent ions, the ambiguity of a nominal (monoisotopic) / is reduced and hence the identification of chemicals in a complex chemical environment with a high level of confidence is enabled.
View Article and Find Full Text PDFIn this study we demonstrate the potential of selective reagent ionisation-time of flight-mass spectrometry for the rapid and selective identification of a popular new psychoactive substance blend called 'synthacaine', a mixture that is supposed to imitate the sensory and intoxicating effects of cocaine. Reactions with H3O(+) result in protonated parent molecules which can be tentatively assigned to benzocaine and methiopropamine. However, by comparing the product ion branching ratios obtained at two reduced electric field values (90 and 170 Td) for two reagent ions (H3O(+) and NO(+)) to those of the pure chemicals, we show that identification is possible with a much higher level of confidence then when relying solely on the m/z of protonated parent molecules.
View Article and Find Full Text PDFThe isomers 4-methylethcathinone and N-ethylbuphedrone are substitutes for the recently banned drug mephedrone. We find that with conventional proton transfer reaction mass spectrometry (PTR-MS), it is not possible to distinguish between these two isomers, because essentially for both substances, only the protonated molecules are observed at a mass-to-charge ratio of 192 (C12 H18NO(+)). However, when utilising an advanced PTR-MS instrument that allows us to switch the reagent ions (selective reagent ionisation) from H3O(+) (which is commonly used in PTR-MS) to NO(+), O2(+) and Kr(+), characteristic product (fragment) ions are detected: C4H10N(+) (72 Da) for 4-methylethcathinone and C5 H12N(+) (86 Da) for N-ethylbuphedrone; thus, selective reagent ionisation MS proves to be a powerful tool for fast detection and identification of these compounds.
View Article and Find Full Text PDFFour assay procedures for tobramycin in serum--enzyme immunoassay (I), substrate-labeled fluorescent immunoassay (II), radioimmunoassay (III), and bioassay (IV)--were compared and evaluated by replicate and analytical recovery studies. I and II were about 50% more precise than III and IV. II was substantially more nearly accurate than the other methods and also gave the best reproducibility (correlation coefficient 0.
View Article and Find Full Text PDFBr J Ind Med
October 1967
This investigation was undertaken primarily to examine the possibility of hearing damage from industrial ultrasonic equipment. In the factory concerned, ultrasonic washers and drills were used at a number of different locations, and girls working 12 ft (3·6 m.) away from one bank of three small washers complained of unpleasant subjective effects which included fatigue, persistent headaches, nausea, and tinnitus.
View Article and Find Full Text PDF