High-grade gliomas (HGGs) and glioblastoma multiforme (GBM) are characterized by a heterogeneous and aggressive population of tissue-infiltrating cells that promote both destructive tissue remodeling and aberrant vascularization of the brain. The formation of defective and permeable blood vessels and microchannels and destructive tissue remodeling prevent efficient vascular delivery of pharmacological agents to tumor cells and are the significant reason why therapeutic chemotherapy and immunotherapy intervention are primarily ineffective. Vessel-forming endothelial cells and microchannel-forming glial cells that recapitulate vascular mimicry have both infiltration and destructive remodeling tissue capacities.
View Article and Find Full Text PDFA great bulk of recent experimental evidence suggests the key role of the complex crosstalk between the extracellular matrix (ECM) and the cellular component of tissues during morphogenesis and embryogenesis. In particular, remodeling of the ECM and of its physical interactions pattern with surrounding cells represent two crucial processes that might be involved in muscle development. However, little information is available on this topic, especially on invertebrate species.
View Article and Find Full Text PDFThe identification of markers for early diagnosis, prognosis, and improvement of therapeutic options represents an unmet clinical need to increase survival in Non-Small Cell Lung Cancer (NSCLC), a neoplasm still characterized by very high incidence and mortality. Here, we investigated whether proline dehydrogenase (PRODH), a mitochondrial flavoenzyme catalyzing the key step in proline degradation, played a role in NSCLC tumorigenesis. PRODH expression was investigated by immunohistochemistry; digital PCR, quantitative PCR, immunoblotting, measurement of reactive oxygen species (ROS), and functional cellular assays were carried out.
View Article and Find Full Text PDFhomeobox genes have been extensively studied for their role in development, especially in neuroectoderm formation. Recently, their expression has also been reported in adult physiological and pathological tissues, including retina, mammary and pituitary glands, sinonasal mucosa, in several types of cancer, and in response to inflammatory, ischemic, and hypoxic stimuli. Reactivation of genes in adult tissues supports the notion of the evolutionary amplification of functions of genes by varying their temporal expression, with the selection of homeobox genes from the "toolbox" to drive or contribute to different processes at different stages of life.
View Article and Find Full Text PDFThe patient reported here underwent hematopoietic stem cell transplantation (HSCT) due to chronic granulomatous disease (CGD) caused by biallelic mutations of the NCF1 gene. Two years later, he developed AML, which was unexpected and was recognized via sex-mismatched chromosomes as deriving from the donor cells; the patient was male, and the donor was his sister. Donor cell leukemia (DCL) is very rare, and it had never been reported in patients with CGD after HSCT.
View Article and Find Full Text PDFIn recent years, there has been a growing interest in developing innovative anticancer therapies targeting the tumor microenvironment (TME). The TME is a complex and dynamic milieu surrounding the tumor mass, consisting of various cellular and molecular components, including those from the host organism, endowed with the ability to significantly influence cancer development and progression. Processes such as angiogenesis, immune evasion, and metastasis are crucial targets in the search for novel anticancer drugs.
View Article and Find Full Text PDFThe invertebrate leech represents a powerful experimental animal model for improving the knowledge about the functional interaction between the extracellular matrix (ECM) and cells within the tissue microenvironment (TME), and the key role played by ECM stiffness during development and growth. Indeed, the medicinal leech is characterized by a simple anatomical organization reproducing many aspects of the basic biological processes of vertebrates and in which a rapid spatiotemporal development is well established and easily assessed. Our results show that ECM structural organization, as well as the amount of fibrillar and non-fibrillar collagen are deeply different from hatching leeches to adult ones.
View Article and Find Full Text PDFGenetic variation of the gene encoding for the only human enzyme of the T2 ribonucleases family (RNASET2) emerged in genome-wide association studies as a putative risk hotspot for Graves' disease (GD). T2 ribonucleases activities include immune regulation, induction of cell apoptosis and differentiation. Several reports supported the hypothesis that RNASET2 represents a "danger" message addressed to the innate immune system in peculiar conditions.
View Article and Find Full Text PDFAmyloid fibrils and fibril-like structures are currently estimated to represent many different products of several genes in humans and play a key role in many types of proteinopathies, commonly associated with ageing process. They share the mutual feature of aggregation-prone proteins and the building up of molecular-supramolecular structure, such as inter-neuronal plaques in the brain of Alzheimer's Disease (AD) patients, characterized by an extraordinary strength. Noteworthy, this type of structure has been reported in different organisms, in particular in invertebrates.
View Article and Find Full Text PDFIntroduction: Müller glial cells typically activate to react to hypoxic tissue damage in several retinal diseases. We evaluated the response to a hypoxia-mimicking stimulus on the expression of a set of genes, known to contribute to eye morphogenesis and cell differentiation.
Materials And Methods: A MIO-M1 Müller cell line was cultured in a hypoxia-mimicking environment by the addition of cobalt chloride to the culture medium, followed by a recovery time in which we mimic restoration from the hypoxic insult.
Background: The novel coronavirus has a high mortality rate (over 1% for patients older than 50 years). This can only be partially ascribed to other comorbidities. A possible explanation is a factor that assures a prompt response to SARS-CoV-2 in younger people, independent from the novelty of the virus itself.
View Article and Find Full Text PDFBackground: An isochromosome of the long arm of chromosome 7, i(7)(q10), and an interstitial deletion of the long arm of chromosome 20, del(20)(q), are the most frequent anomalies in the bone marrow of patients with Shwachman-Diamond syndrome, which is caused in most cases by mutations of the SBDS gene. These clonal changes imply milder haematological symptoms and lower risk of myelodysplastic syndromes and acute myeloid leukaemia, thanks to already postulated rescue mechanisms.
Results: Bone marrow from fourteen patients exhibiting either the i(7)(q10) or the del(20)(q) and coming from two large cohorts of patients, were subjected to chromosome analyses, Fluorescent In Situ Hybridization with informative probes and array-Comparative Genomic Hybridization.
Inflammatory bowel diseases (IBDs) are a group of inflammatory conditions of the colon and small intestine, including Crohn's disease and ulcerative colitis. Since Danio rerio is a promising animal model to study gut function, we developed a soy-dependent model of intestinal inflammation in adult zebrafish. The soya bean meal diet was given for 4 weeks and induced an inflammatory process, as demonstrated by morphological changes together with an increased percentage of neutrophils infiltrating the intestinal wall, which developed between the second and fourth week of treatment.
View Article and Find Full Text PDFHypoxia is a key component of the tumor microenvironment (TME) and promotes not only tumor growth and metastasis, but also negatively affects infiltrating immune cells by impairing host immunity. Dendritic cells (DCs) are the most potent antigen-presenting cells and their biology is weakened in the TME in many ways, including the modulation of their viability. RNASET2 belongs to the T2 family of extracellular ribonucleases and, besides its nuclease activity, it exerts many additional functions.
View Article and Find Full Text PDFSeveral studies have recently demonstrated that the correct regeneration of damaged tissues and the maintaining of homeostasis after wounds or injuries are tightly connected to different biological events, involving immune response, fibroplasia, and angiogenetic processes, in both vertebrates and invertebrates. In this context, our previous data demonstrated that the recombinant protein rRNASET2 not only plays a pivotal role in innate immune modulation, but is also able to activate resident fibroblasts leading to new collagen production, both and . Indeed, when injected in the leech body wall, which represents a consolidated invertebrate model for studying both immune response and tissue regeneration, RNASET2 induces macrophages recruitment, fibroplasia, and synthesis of new collagen.
View Article and Find Full Text PDFHuman breast adenocarcinoma cells (MCF7) grow in three-dimensional culture as spheroids that represent the structural complexity of avascular tumors. Therefore, spheroids offer a powerful tool for studying cancer development, aggressiveness, and drug resistance. Notwithstanding the large amount of data regarding the formation of MCF7 spheroids, a detailed description of the morpho-functional changes during their aggregation and maturation is still lacking.
View Article and Find Full Text PDFMembers of the T2 extracellular ribonucleases family have long been reported as stress response proteins, often involved in host defence, in many different taxonomic groups. In particular, the human RNASET2 protein (hRNASET2) has been reported as an extracellular tumor suppressor protein, endowed with the ability to act as an "alarmin" signalling molecule following its expression and secretion in the tumor microenvironment by cancer cells and the subsequent recruitment and activation of cells belonging to the host innate immune system. Many in vitro and in vivo assays have been recently reported in support of the oncosuppressive role of hRNASET2: most of them relied on genetically engineered cell lines and the use of recombinant proteins from non-mammalian sources.
View Article and Find Full Text PDFHuman RNASET2 acts as a powerful oncosuppressor protein in in vivo xenograft-based murine models of human cancer. Secretion of RNASET2 in the tumor microenvironment seems involved in tumor suppression, following recruitment of M1-polarized macrophages. Here, we report a murine -based syngeneic in vivo assay.
View Article and Find Full Text PDF