Transfer RNA (tRNA) modifications are crucial for protein synthesis, but their position-specific physiological roles remain poorly understood. Here we investigate the impact of N4-acetylcytidine (acC), a highly conserved tRNA modification, using a Thumpd1 knockout mouse model. We find that loss of Thumpd1-dependent tRNA acetylation leads to reduced levels of tRNA, increased ribosome stalling, and activation of eIF2α phosphorylation.
View Article and Find Full Text PDFCanonical microRNA (miRNA) hairpins are processed by the RNase III enzymes Drosha and Dicer into ∼22 nt RNAs loaded into an Argonaute (Ago) effector. In addition, splicing generates numerous intronic hairpins that bypass Drosha (mirtrons) to yield mature miRNAs. Here, we identify hundreds of previously unannotated, splicing-derived hairpins in intermediate-length (∼50-100 nt) but not small (20-30 nt) RNA data.
View Article and Find Full Text PDFTENTs generate miRNA isoforms by 3' tailing. However, little is known about how tailing regulates miRNA function. Here, we generate isogenic HEK293T cell lines in which TENT2, TUT4 and TUT7 are knocked out individually or in combination.
View Article and Find Full Text PDFThe Drosha cleavage of a pri-miRNA defines mature microRNA sequence. Drosha cleavage at alternative positions generates 5' isoforms (isomiRs) which have distinctive functions. To understand how pri-miRNA structures influence Drosha cleavage, we performed a systematic analysis of the maturation of endogenous pri-miRNAs and their variants both and .
View Article and Find Full Text PDFSynthetic messenger RNA (mRNA) is an emerging therapeutic platform with important applications in oncology and infectious disease. Effective mRNA medicines must be translated by the ribosome but not trigger a strong nucleic acid-mediated immune response. To expand the medicinal chemistry toolbox for these agents, here we report the properties of the naturally occurring nucleobase N-acetylcytidine (ac4C) in synthetic mRNAs.
View Article and Find Full Text PDFSerine palmitoyltransferase complex (SPT) mediates the first and rate-limiting step in the de novo sphingolipid biosynthetic pathway. The larger subunits SPTLC1 and SPTLC2/SPTLC3 together form the catalytic core while a smaller third subunit either SSSPTA or SSSPTB has been shown to increase the catalytic efficiency and provide substrate specificity for the fatty acyl-CoA substrates. The in vivo biological significance of these smaller subunits in mammals is still unknown.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are a class of small noncoding RNAs about 22-nucleotide (nt) in length that collectively regulate more than 60% of coding genes. Aberrant miRNA expression is associated with numerous diseases, including cancer. miRNA biogenesis is licenced by the ribonuclease (RNase) III enzyme Drosha, the regulation of which is critical in determining miRNA levels.
View Article and Find Full Text PDFMicroRNAs (miRNAs) associated with Argonaute proteins (AGOs) regulate gene expression in mammals. miRNA 3' ends are subject to frequent sequence modifications, which have been proposed to affect miRNA stability. However, the underlying mechanism is not well understood.
View Article and Find Full Text PDFCellular non-membranous RNA-granules, P-bodies (RNA processing bodies, PB) and stress granules (SG), are important components of the innate immune response to virus invasion. Mechanisms governing how a virus modulates PB formation remain elusive. Here, we report the important roles of GW182 and DDX6, but not Dicer, Ago2 and DCP1A, in PB formation, and that Kaposi's sarcoma-associated herpesvirus (KSHV) lytic infection reduces PB formation through several specific interactions with viral RNA-binding protein ORF57.
View Article and Find Full Text PDFMany microRNAs (miRNAs) exist alongside abundant miRNA isoforms (isomiRs), most of which arise from post-maturation sequence modifications such as 3' uridylation. However, the ways in which these sequence modifications affect miRNA function remain poorly understood. Here, using human miR-27a in cell lines as a model, we discovered that a nonfunctional target site unable to base-pair extensively with the miRNA seed sequence can regain function when an upstream adenosine is able to base-pair with a post-transcriptionally added uridine in the miR-27a tail.
View Article and Find Full Text PDFBiochim Biophys Acta Gene Regul Mech
April 2020
MicroRNAs (miRNAs) are a class of small non-coding RNAs that play increasingly appreciated roles in gene regulation. In animals, miRNAs silence gene expression by binding to partially complementary sequences within target mRNAs. It is well-established that miRNAs recognize canonical target sites by base-pairing in the 5'region.
View Article and Find Full Text PDFMicroRNA (miRNA) processing begins with Drosha cleavage, the fidelity of which is critical for downstream processing and mature miRNA target specificity. To understand how pri-miRNA sequence and structure influence Drosha cleavage, we studied the maturation of three pri-miR-9 paralogs, which encode the same mature miRNA but differ in the surrounding scaffold. We show that pri-miR-9-1 has a unique Drosha cleavage profile due to its distorted and flexible stem structure.
View Article and Find Full Text PDFRNase III enzyme Drosha interacts with DGCR8 to form the Microprocessor, initiating canonical microRNA (miRNA) maturation in the nucleus. Here, we re-evaluated where Drosha functions in cells using Drosha and/or DGCR8 knock out (KO) cells and cleavage reporters. Interestingly, a truncated Drosha mutant located exclusively in the cytoplasm cleaved pri-miRNA effectively in a DGCR8-dependent manner.
View Article and Find Full Text PDFPancreatic cancer is the fourth leading cause of cancer-related mortality in the world. Pancreatic cancer can be localized, locally advanced, or metastatic. The median 1- and 5-year survival rates are 25% and 6%, respectively.
View Article and Find Full Text PDFEmbryonic stem cells (ESCs) can undergo unlimited self-renewal and retain pluripotent developmental potential. The unique characteristics of ESCs, including a distinct transcriptional network, a poised epigenetic state, and a specific cell cycle profile, distinguish them from somatic cells. However, the molecular mechanisms underlying these special properties of ESCs are not fully understood.
View Article and Find Full Text PDFSelf-renewal and pluripotency are hallmarks of embryonic stem cells (ESCs). However, the signaling pathways that trigger their transition from self-renewal to differentiation remain elusive. Here, we report that calcineurin-NFAT signaling is both necessary and sufficient to switch ESCs from an undifferentiated state to lineage-specific cells and that the inhibition of this pathway can maintain long-term ESC self-renewal independent of leukemia inhibitory factor.
View Article and Find Full Text PDFEmbryonic stem cells (ESCs) possess the capacity to proliferate indefinitely in an undifferentiated state and to differentiate into various cell types in an organism. However, the critical question of how self-renewal and differentiation are precisely regulated in ESCs is not entirely understood at present. Here, we report the essential role of Tbx3, a pluripotency-related transcription factor of the T-box gene family, for both the maintenance of self-renewal of mouse ESCs and for their differentiation into extraembryonic endoderm (ExEn).
View Article and Find Full Text PDFSelf-renewal and differentiation of embryonic stem cells (ESCs) are controlled by intracellular transcriptional factors and extracellular factor-activated signaling pathways. Transcription factor Oct4 is a key player maintaining ESCs in an undifferentiated state, whereas the Erk/MAPK pathway is known to be important for ESC differentiation. However, the manner in which intracellular pluripotency factors modulate extracellular factor-activated signaling pathways in ESCs is not well understood.
View Article and Find Full Text PDFEmbryonic stem cells (ESCs) possess the capacity to self-renew and differentiate into all cell types of an organism. It is essential to understand how these properties are controlled for the potential usage of their derivatives in clinical settings and reprogramming of differentiated somatic cells. Although transcriptional factors, such as Oct4, Sox2, and Nanog, have been considered as a part of the core regulatory circuitry, a growing body of evidence suggests that additional factors exist and contribute to the control of ESC self-renewal and differentiation.
View Article and Find Full Text PDFPOU transcription factor OCT4 not only plays an essential role in maintaining the pluripotent and self-renewing state of embryonic stem (ES) cells but also acts as a cell fate determinant through a gene dosage effect. However, the molecular mechanisms that control the intracellular OCT4 protein level remain elusive. Here, we report that human WWP2, an E3 ubiquitin (Ub)-protein ligase, interacts with OCT4 specifically through its WW domain and enhances Ub modification of OCT4 both in vitro and in vivo.
View Article and Find Full Text PDF