Optimization of ICH safety guideline studies for inclusion into regulatory submissions is critical for resource conservation, animal use reduction, and efficient drug development. The ICH S7A guidance for Safety Pharmacology (SP) studies adopted in 2001 identified the core battery of studies to evaluate the acute safety of putative pharmaceutical molecules prior to First in Human (FIH) trials. To assess the utility of respiratory studies in predicting clinical AE's, seven pharmaceutical companies pooled preclinical and clinical respiratory findings.
View Article and Find Full Text PDFObjective: In 2017, our Level IV NICU switched from providing bovine-derived (BOV-fort) to human milk-derived fortifiers (HM-fort) and donor human milk (DHM) to premature infants born ≤ 30 weeks or ≤1250 g. Following this change, providers anecdotally observed increased hypoglycemia, hypercalcemia, and hyperphosphatemia. This study investigated potential laboratory differences between infants fed Bovine vs.
View Article and Find Full Text PDFObjective: To investigate differences in hypoglycemia and extended feed prescriptions among premature infants provided bovine-derived human milk fortifiers (Bov-fort) with mother's milk or formula vs human milk-derived human milk fortifiers (HM-fort) with mother's milk or donor human milk.
Study Design: This was a retrospective chart review (n = 98). Infants receiving HM-fort were matched with infants receiving Bov-fort.
The nonhuman primate (NHP) has always been a limited resource for pharmaceutical research with ongoing efforts to conserve. This is due to their inherent biological properties, the growth in biotherapeutics and other modalities, and their use in small molecule drug development. The SARS-CoV-2 pandemic has significantly impacted the availability of NHPs due to the immediate need for NHPs to develop COVID-19 vaccines and treatments and the China NHP export ban; thus, accelerating the need to further replace, reduce and refine (3Rs) NHP use.
View Article and Find Full Text PDFIntroduction: The use of high throughput patch clamp profiling to determine mixed ion channel-mediated arrhythmia risk was assessed using profiling data generated using proprietary internal and clinical reference compounds. We define the reproducibility of the platform and highlight inherent platform issues. The data generated was used to develop predictive models for cardiac arrhythmia risk, specifically Torsades de Pointes (TdP).
View Article and Find Full Text PDFTraditional digital computing demands perfectly reliable memory and processing, so programs can build structures once then use them forever-but such deterministic execution is becoming ever more costly in large-scale systems. By contrast, living systems, viewed as computations, naturally tolerate fallible hardware by repairing and rebuilding structures even while in use-and suggest ways to compute using massive amounts of unreliable, merely best-effort hardware. However, we currently know little about programming without deterministic execution, in architectures where traditional models of computation-and deterministic ALife models such as the Game of Life-need not apply.
View Article and Find Full Text PDFPolypeptide antibiotics, such as polymyxins and aminoglycosides, are essential for treatment of life-threatening Gram-negative infections. Acute kidney injury (AKI) attributed to treatment with these agents severely limits their clinical application. Because standard biomarkers (serum creatinine [sCRE] and blood urea nitrogen [BUN]) feature limited sensitivity, the development of novel biomarkers of AKI is important.
View Article and Find Full Text PDFIn the physics of the natural world, basic tasks of life, such as homeostasis and reproduction, are extremely complex operations, requiring the coordination of billions of atoms even in simple cases. By contrast, artificial living organisms can be implemented in computers using relatively few bits, and copying a data structure is trivial. Of course, the physical overheads of the computers themselves are huge, but since their programmability allows digital "laws of physics" to be tailored like a custom suit, deploying living technology atop an engineered computational substrate might be as or more effective than building directly on the natural laws of physics, for a substantial range of desirable purposes.
View Article and Find Full Text PDFWe report novel polymyxin analogues with improved antibacterial in vitro potency against polymyxin resistant recent clinical isolates of Acinetobacter baumannii and Pseudomonas aeruginosa . In addition, a human renal cell in vitro assay (hRPTEC) was used to inform structure-toxicity relationships and further differentiate analogues. Replacement of the Dab-3 residue with a Dap-3 in combination with a relatively polar 6-oxo-1-phenyl-1,6-dihydropyridine-3-carbonyl side chain as a fatty acyl replacement yielded analogue 5x, which demonstrated an improved in vitro antimicrobial and renal cytotoxicity profiles relative to polymyxin B (PMB).
View Article and Find Full Text PDFThe design, synthesis, and biological studies of a novel class of MCH-R1 antagonists based on an aminotetrahydronaphthalene ketopiperazine scaffold is described. Compounds within this class promoted significant body weight reduction in mouse diet induced obesity studies. The potential for hERG blockage activity and QT interval studies in anesthetized dogs are discussed.
View Article and Find Full Text PDFA direct correlation between hERG binding and QTc prolongation was established for a series of aminomethyl tetrahydronaphthalene ketopiperazine MCH-R1 antagonists. Compounds within this class with greater selectivity over hERG were developed. Compound 4h proved to have the best profile, with MCH-R1 Ki = 16 nm and hERG IC50 = 25 microM.
View Article and Find Full Text PDFAminomethyl tetrahydronaphthalene biphenyl carboxamide MCH-R1 antagonists with greater selectivity over hERG were identified. SAR studies addressing two distinct alternatives for structural modifications leading to improve hERG selectivity are described.
View Article and Find Full Text PDFThe tumor promotion stage of chemical carcinogenesis has been shown to exhibit a persistence of cellular effects during treatment and the reversibility of these changes upon cessation of treatment. Inhibition of gap-junctional intercellular communication and increased replicative DNA synthesis appear to be important in this process. The present study assessed the persistence and reversibility of gap-junctional intercellular communication inhibition, peroxisomal proliferation, and replicative DNA synthesis in livers from male F344 rats and B6C3F1 mice.
View Article and Find Full Text PDFBiosens Bioelectron
May 2001
We have developed the first prototypes of a three-dimensional, electrophoretically driven microlaboratory for the analysis of proteins and DNA. By selecting the appropriate spacing and geometrical configuration, oligonucleotides were transported, in a controlled, rapid fashion, by electrophoresis in free-space. Transport efficiencies over 2 mm distances exceeded 70%.
View Article and Find Full Text PDFBioparticle separation, bioparticle enrichment, and electric field-mediated immune detection were carried out on microfabricated semiconductor chips utilizing ac and dc electric fields. Microscale separation on a chip surface having an active area of approximately 16 mm2 was demonstrated for a mixture of Bacillus globigii spores and Escherichia coli bacteria. Dielectrophoretic enrichment was performed by collecting target bioparticles from a flow stream in flow cells of 47.
View Article and Find Full Text PDFAn electric-field-driven assay for fluorescein-labeled staphylococcal enterotoxin B and cholera toxin B was developed on an active electronic microchip. An array of microlocations was transformed into an immunoassay array by electronically biasing electrodes at each microlocation to attract biotinylated capture antibodies. The electric field generated on the array directed the transport, concentration, and binding of biotinylated capture antibodies to streptavidin-coated microlocations.
View Article and Find Full Text PDFThe effects of the peroxisome proliferators di-isononyl phthalate (DINP) and di-2-ethylhexyl phthalate (DEHP) were evaluated in young adult male cynomolgus monkeys after 14 days of treatment, with emphasis on detecting hepatic and other effects seen in rats and mice after treatment with high doses of phthalates. Groups of 4 monkeys received DINP (500 mg/kg/day), DEHP (500 mg/kg/day), or vehicle (0.5% methyl cellulose, 10 ml/kg) by intragastric intubation for 14 consecutive days.
View Article and Find Full Text PDFThe present study evaluated the effect of di-2-ethylhexyl phthalate (DEHP) on gap-junctional intercellular communication (GJIC), peroxisomal beta-oxidation (PBOX) activity, and replicative DNA synthesis in several rodent species with differing susceptibilities to peroxisome proliferator-induced hepatic tumorigenesis. A low (non-tumorigenic) and high (tumorigenic) dietary concentration of DEHP was administered to male F344 rats for 1, 2, 4, and 6 weeks. Additionally, a previously non-tumorigenic dose (1000 ppm) and tumorigenic dose of DEHP (12,000 ppm), as determined by chronic bioassay data, were examined following 2 weeks dietary administration.
View Article and Find Full Text PDF