Pharmacol Res Perspect
October 2015
The Bcl-2 family inhibitors venetoclax and navitoclax demonstrated potent antitumor activity in chronic lymphocytic leukemia patients, notably in reducing marrow load and adenopathy. Subsequent trials with venetoclax have been initiated in non-Hodgkin's lymphoma and multiple myeloma patients. Traditional preclinical models fall short either in faithfully recapitulating disease progression within such compartments or in allowing the direct longitudinal analysis of systemic disease.
View Article and Find Full Text PDFProteins in the B cell CLL/lymphoma 2 (BCL-2) family are key regulators of the apoptotic process. This family comprises proapoptotic and prosurvival proteins, and shifting the balance toward the latter is an established mechanism whereby cancer cells evade apoptosis. The therapeutic potential of directly inhibiting prosurvival proteins was unveiled with the development of navitoclax, a selective inhibitor of both BCL-2 and BCL-2-like 1 (BCL-X(L)), which has shown clinical efficacy in some BCL-2-dependent hematological cancers.
View Article and Find Full Text PDFBackground And Purpose: Bendamustine with or without rituximab provides an effective and more tolerable alternative to the polytherapy cyclophosphamide-doxorubicin-vincristine-prednisolone (CHOP) in the treatment of haematological tumours and is currently approved for the treatment of many haematological malignancies. Navitoclax (ABT-263) is a potent inhibitor of Bcl-2, Bcl-x(L) and Bcl-w, which has demonstrated efficacy in haematological tumours alone and in combination with other agents. This paper describes the in vivo efficacy of combining either bendamustine or bendamustine plus rituximab (BR) with navitoclax in xenograft models of non-Hodgkin's lymphoma
Experimental Approach: Activity was tested in xenograft models of diffuse large B-cell lymphoma (DoHH-2, SuDHL-4), mantle cell lymphoma (Granta 519) and Burkitt's lymphoma (RAMOS).
The ability of a cancer cell to avoid apoptosis is crucial to tumorigenesis and can also contribute to chemoresistance. The Bcl-2 family of prosurvival proteins (Bcl-2, Bcl-X(L), Bcl-w, Mcl-1, and A1) plays a key role in these processes. We previously reported the discovery of ABT-263 (navitoclax), a potent small-molecule inhibitor of Bcl-2, Bcl-X(L), and Bcl-w.
View Article and Find Full Text PDFPurpose: This study was designed to test the ability of the Bcl-2 family inhibitor ABT-263 to potentiate commonly used chemotherapeutic agents and regimens in hematologic tumor models.
Methods: Models of B-cell lymphoma and multiple myeloma were tested in vitro and in vivo with ABT-263 in combination with standard chemotherapeutic regimens, including VAP, CHOP and R-CHOP, as well as single cytotoxic agents including etoposide, rituximab, bortezomib and cyclophosphamide. Alterations in Bcl-2 family member expression patterns were analyzed to define mechanisms of potentiation.
Apoptosis is a highly regulated process of programmed cell death essential for normal physiology. Dysregulation of apoptosis contributes to the development and progression of various diseases, including cancer, neurodegenerative disorders, and chronic heart failure. Quantitative noninvasive imaging of apoptosis in preclinical models would allow for dynamic longitudinal screening of compounds and facilitates a more rapid determination of therapeutic efficacy.
View Article and Find Full Text PDFABT-263 is a potent, orally bioavailable inhibitor of the antiapoptotic Bcl-2 family members Bcl-2, Bcl-x(L), and Bcl-w, which is currently in phase I clinical trials. Previous work has shown that this compound has low nanomolar cell-killing activity in a variety of lymphoma and leukemia cell lines, many of which overexpress Bcl-2 through a variety of mechanisms. Rapamycin is a macrolide antibiotic that inhibits the mammalian target of rapamycin complex, leading to cell cycle arrest and inhibition of protein translation.
View Article and Find Full Text PDFPurpose: The purpose of this study was to characterize the activity of the Bcl-2 protein family inhibitor ABT-263 in a panel of small cell lung cancer (SCLC) xenograft models.
Experimental Design: A panel of 11 SCLC xenograft models was established to evaluate the efficacy of ABT-263. Single agent activity was examined on a continuous dosing schedule in each of these models.
AKT1/protein kinase Balpha is a protein-serine/threonine kinase that regulates multiple targets involved in cell survival and cell cycle progression in a variety of cell types including breast cancer cells. To explore the role of Akt1 in mammary gland function and tumorigenesis, transgenic mice were generated that express human AKT1 under the control of the MMTV promoter. Virgin transgenic mice did not exhibit a dominant phenotype, but upon cessation of lactation, a notable delay in involution occurred compared to age-matched non-transgenic mice.
View Article and Find Full Text PDFMHC-linked genes strongly influence susceptibility to autoimmune diseases and also regulate responses to exogenous antigens. To begin to understand the mechanism of this MHC effect on disease, we have investigated MHC-congenic mouse strains that develop spontaneous autoimmunity because of the lpr gene. C57BL6/lpr (B6/lpr) mice (H-2b) are known to have substantial levels of autoantibodies to chromatin, single stranded DNA (ssDNA3), and IgG of different murine subclasses (rheumatoid factor).
View Article and Find Full Text PDF