Publications by authors named "Acisclo Perez-Martos"

Human mitochondrial DNA (mtDNA) shows extensive within population sequence variability. Many studies suggest that mtDNA variants may be associated with ageing or diseases, although mechanistic evidence at the molecular level is lacking. Mitochondrial replacement has the potential to prevent transmission of disease-causing oocyte mtDNA.

View Article and Find Full Text PDF

Electrons feed into the mitochondrial electron transport chain (mETC) from NAD- or FAD-dependent enzymes. A shift from glucose to fatty acids increases electron flux through FAD, which can saturate the oxidation capacity of the dedicated coenzyme Q (CoQ) pool and result in the generation of reactive oxygen species. To prevent this, the mETC superstructure can be reconfigured through the degradation of respiratory complex I, liberating associated complex III to increase electron flux via FAD at the expense of NAD.

View Article and Find Full Text PDF

Electron flux in the mitochondrial electron transport chain is determined by the superassembly of mitochondrial respiratory complexes. Different superassemblies are dedicated to receive electrons derived from NADH or FADH2, allowing cells to adapt to the particular NADH/FADH2 ratio generated from available fuel sources. When several fuels are available, cells adapt to the fuel best suited to their type or functional status (e.

View Article and Find Full Text PDF

The efficiency of the cellular oxidative phosphorylation system was recently shown to be modulated by common mitochondrial tRNA(A) (rg) haplotypes. The molecular mechanism by which some mt-Tr haplotypes induce these functional differences remains undetermined. Common polymorphisms in mouse mt-Tr genes affect the size of the dihydrouridine loop in the mature tRNA, producing loops of between five and seven nucleotides, the largest being a rare variant among mammals.

View Article and Find Full Text PDF

The textbook description of mitochondrial respiratory complexes (RCs) views them as free-moving entities linked by the mobile carriers coenzyme Q (CoQ) and cytochrome c (cyt c). This model (known as the fluid model) is challenged by the proposal that all RCs except complex II can associate in supercomplexes (SCs). The proposed SCs are the respirasome (complexes I, III, and IV), complexes I and III, and complexes III and IV.

View Article and Find Full Text PDF

About half of the mitochondrial DNA (mtDNA) mutations causing diseases in humans occur in tRNA genes. Particularly intriguing are those pathogenic tRNA mutations than can reach homoplasmy and yet show very different penetrance among patients. These mutations are scarce and, in addition to their obvious interest for understanding human pathology, they can be excellent experimental examples to model evolution and fixation of mitochondrial tRNA mutations.

View Article and Find Full Text PDF

The mitochondrial oxidative phosphorylation (OxPhos) system produces most of the ATP required by the cell. The structural proteins of the OxPhos holoenzymes are well known, but important aspects of their biogenesis and regulation remain to be uncovered and a significant fraction of mitochondrial proteins have yet to be identified. We have used a high throughput, genome-wide RNA interference (RNAi) approach to identify new OxPhos-related genes.

View Article and Find Full Text PDF

Each cell type develops and maintains a specific oxidative phosphorylation (OXPHOS) capacity to satisfy its metabolic and energetic demands. This implies that there are differences between tissues in mitochondrial number, function, protein composition and morphology. The OXPHOS system biogenesis requires the coordinated expression of both mitochondrial and nuclear genomes.

View Article and Find Full Text PDF

Mitochondrial-DNA diseases have no effective treatments. Allotopic expression-synthesis of a wild-type version of the mutated protein in the nuclear-cytosolic compartment and its importation into mitochondria-has been proposed as a gene-therapy approach. Allotopic expression has been successfully demonstrated in yeast, but in mammalian mitochondria results are contradictory.

View Article and Find Full Text PDF

Complex I (CI) is the largest enzyme of the mammalian mitochondrial respiratory chain. The biogenesis of the complex is a very complex process due to its large size and number of subunits (45 subunits). The situation is further complicated due to the fact that its subunits have a double genomic origin, as seven of them are encoded by the mitochondrial DNA.

View Article and Find Full Text PDF

The use of good quality preparations of isolated mitochondria is necessary when studying the mitochondrial biogenetical activities. This article explains a fast and simple method for the purification of mammalian mitochondria from different tissues and cultured cells, that is suitable for the analysis of many aspects of the organelle's biogenesis. The mitochondria isolated following the protocol described here, are highly active and capable of DNA, RNA and protein synthesis.

View Article and Find Full Text PDF

Animal mitochondria are refractory to transformation. This fact has hampered the study of the oxidative phosphorylation system biogenesis by genetic manipulation of the mitochondrial DNA (mtDNA). In humans, a larger variety of mutants have been obtained from patients with mitochondrial diseases, but still we lack a great portion of the range of potential mutants and there is a major obstacle: Animal models cannot be derived from human mtDNA mutants.

View Article and Find Full Text PDF

The structural organization of the mitochondrial respiratory complexes as four big independently moving entities connected by the mobile carriers CoQ and cytochrome c has been challenged recently. Blue native gel electrophoresis reveals the presence of high-molecular-weight bands containing several respiratory complexes and suggesting an in vivo assembly status of these structures (respirasomes). However, no functional evidence of the activity of supercomplexes as true respirasomes has been provided yet.

View Article and Find Full Text PDF

We have restored the CoQ oxidative capacity of mouse mtDNA-less cells (rho degrees cells) by transforming them with the alternative oxidase Aox of Emericella nidulans. Cotransforming rho degrees cells with the NADH dehydrogenase of Saccharomyces cerevisiae, Ndi1 and Aox recovered the NADH DH/CoQ reductase and the CoQ oxidase activities. CoQ oxidation by AOX reduces the dependence of rho degrees cells on pyruvate and uridine.

View Article and Find Full Text PDF

Biogenesis of the oxidative phosphorylation system (OXPHOS) requires the coordinated expression of the nuclear and the mitochondrial genomes. Thyroid hormones play an important role in cell growth and differentiation and are one of the main effectors in mitochondrial biogenesis. To determine how mtDNA expression is regulated, we have investigated the response of two different tissues, the heart and liver, to the thyroid hormone status in vivo and in vitro.

View Article and Find Full Text PDF

Cisplatin accumulates in mitochondria, which are a major target for this drug in cancer cells. Thus alterations in mitochondrial function have been implicated in cancer cell resistance to chemotherapeutic agents. Moreover, cisplatin toxic side effects seem to be associated with mitochondrial injury in vivo and in vitro.

View Article and Find Full Text PDF

Common mitochondrial DNA (mtDNA) haplotypes in humans and mice have been associated with various phenotypes, including learning performance and disease penetrance. Notably, no influence of mtDNA haplotype in cell respiration has been demonstrated. Here, using cell lines carrying four different common mouse mtDNA haplotypes in an identical nuclear background, we show that the similar level of respiration among the cell lines is only apparent and is a consequence of compensatory mechanisms triggered by different production of reactive oxygen species.

View Article and Find Full Text PDF

A puzzling observation in patients with oxidative phosphorylation (OXPHOS) deficiencies is the presence of combined enzyme complex defects associated with a genetic alteration in only one protein-coding gene. In particular, mutations in the mtDNA encoded cytochrome b gene are associated either with combined complex I+III deficiency or with only complex III deficiency. We have reproduced the combined complex I+III defect in mouse and human cultured cell models harboring cytochrome b mutations.

View Article and Find Full Text PDF

Sperm motility is dependent on mitochondrial ATP production that relies on the coordinated expression of the mitochondrial and nuclear genomes. It is generally accepted that mammalian ejaculated spermatozoa retain the ability to synthesize mtDNA-encoded proteins but not most of the nuclear ones. This implies an asynchronous regulation of the oxidative phosphorylation-related genes encoded by each genome.

View Article and Find Full Text PDF

The existence of reliable mtDNA reference sequences for each species is of great relevance in a variety of fields, from phylogenetic and population genetics studies to pathogenetic determination of mtDNA variants in humans or in animal models of mtDNA-linked diseases. We present compelling evidence for the existence of sequencing errors on the current mouse mtDNA reference sequence. This includes the deletion of a full codon in two genes, the substitution of one amino acid on five occasions and also the involvement of tRNA and rRNA genes.

View Article and Find Full Text PDF

Mitochondrial transcription factor A (TFAM) has been shown to stimulate transcription from mitochondrial DNA promoters in vitro. In order to determine whether changes in TFAM levels also regulate RNA synthesis in situ, recombinant human precursor proteins were imported into the matrix of rat liver mitochondria. After uptake of wt-TFAM, incorporation of [alpha-32P]UTP into mitochondrial mRNAs as well as rRNAs was increased 2-fold (P < 0.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers identified a cell line with single and double mutations in the cytochrome c oxidase (COX) subunit I gene from mouse mitochondrial DNA, impacting enzyme activity.
  • The single mutation results in normal assembly of complex IV but reduced COX activity, while the double mutation nearly compensates for this defect.
  • The study suggests that harmful mutations can become prevalent in cells, cells can maintain multiple mitochondrial DNA variants, and structural changes near Val421 in the COX enzyme may influence its function.
View Article and Find Full Text PDF

Sperm mitochondria play an important role in spermatozoa because of the high ATP demand of these cells. Different mitochondrial DNA (mtDNA) mutations and haplogroups influence sperm function. The mtDNA dose also contributes to genetic variability and pathology in different tissues and organs, but nothing is known about its relevance in the performance of spermatozoa.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: