Publications by authors named "Achuthan A"

Background And Purpose: Size-specific dose estimates (SSDE) have been introduced into computed tomography (CT) dosimetry to tailor patients' unique sizes to facilitate accurate CT radiation dose quantification and optimization. The purpose of this study was to develop and validate an automated algorithm for the determination of patient size (effective diameter) and SSDE.

Materials And Methods: A MATLAB platform was used to develop software of algorithms based on image segmentation techniques to automate the calculation of patient size and SSDE.

View Article and Find Full Text PDF
Article Synopsis
  • * This review focuses on how TGF-β interacts with monocytes and macrophages in the tumor microenvironment, impacting their activities and contributing to immunosuppression that aids tumor progression.
  • * The article also highlights ongoing clinical efforts aimed at targeting TGF-β in cancer treatment, showing potential benefits in the field of immuno-oncology.
View Article and Find Full Text PDF

This study introduces a new biosorbent derived from Delonix regia bark-activated carbon to efficiently remove Chromium Cr(VI) metal ions from aqueous systems. The biosorbent was synthesized from the bark powder of the plant species and chemically activated with phosphoric acid. The biosorbent was characterized using FTIR, SEM, and BET to determine its functional properties and structural morphology.

View Article and Find Full Text PDF

Objective: We have previously reported that the interleukin-23 p19 subunit (IL-23p19) is required for experimental inflammatory arthritic pain-like behavior and disease. Even though inflammation is often a characteristic feature of osteoarthritis (OA), IL-23 is not usually considered as a therapeutic target in OA. We began to explore the role of IL-23p19 in OA pain and disease utilizing mouse models of OA and patient samples.

View Article and Find Full Text PDF

Plasmodium falciparum infection causes the most severe form of malaria, where excessive production of proinflammatory cytokines can drive the pathogenesis of the disease. Monocytes play key roles in host defense against malaria through cytokine production and phagocytosis; however, they are also implicated in pathogenesis through excessive proinflammatory cytokine production. Understanding the underlying molecular mechanisms that contribute to inflammatory cytokine production in P.

View Article and Find Full Text PDF

Transforming growth factor-β (TGF-β) is a pleiotropic cytokine essential for multiple biological processes, including the regulation of inflammatory and immune responses. One of the important functions of TGF-β is the suppression of the proinflammatory cytokine interleukin-12 (IL-12), which is crucial for mounting an anti-tumorigenic response. Although the regulation of the IL-12p40 subunit (encoded by the IL-12B gene) of IL-12 has been extensively investigated, the knowledge of IL-12p35 (encoded by IL-12A gene) subunit regulation is relatively limited.

View Article and Find Full Text PDF

Glioblastoma is highly proliferative and invasive. However, the regulatory cytokine networks that promote glioblastoma cell proliferation and invasion into other areas of the brain are not fully defined. In the present study, we define a critical role for the IL-11/IL-11Rα signalling axis in glioblastoma proliferation, epithelial to mesenchymal transition, and invasion.

View Article and Find Full Text PDF

Glucocorticoids (GCs) are potent anti-inflammatory agents and are broadly used in treating rheumatoid arthritis (RA) patients, albeit with adverse side effects associated with long-term usage. The negative consequences of GC therapy provide an impetus for research into gaining insights into the molecular mechanisms of GC action. We have previously reported that granulocyte-macrophage colony-stimulating factor (GM-CSF)-induced CCL17 has a non-redundant role in inflammatory arthritis.

View Article and Find Full Text PDF

Surfactant protein B (SP-B) deficiency is a rare genetic disease that causes fatal respiratory failure within the first year of life. Currently, the only corrective treatment is lung transplantation. Here, we co-transduced the murine lung with adeno-associated virus 6.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a destructive inflammatory autoimmune disease that causes pain and disability. Many of the currently available drugs for treating RA patients are aimed at halting the progression of the disease and alleviating inflammation. Further, some of these treatment options have drawbacks, including disease recurrence and adverse effects due to long-term use.

View Article and Find Full Text PDF

Objectives: We have previously identified a granulocyte macrophage-colony stimulating factor (GM-CSF)/C-C motif ligand 17 (CCL17) pathway in monocytes/macrophages, in which GM-CSF regulates the formation of CCL17, and it is important for an experimental osteoarthritis (OA) model. We explore here additional OA models, including in the presence of obesity, such as a requirement for this pathway.

Design: The roles of GM-CSF, CCL17, CCR4, and CCL22 in various experimental OA models, including those incorporating obesity (eight-week high-fat diet), were investigated using gene-deficient male mice.

View Article and Find Full Text PDF

Macrophages are heterogeneous innate immune cells that are functionally shaped by their surrounding microenvironment. Diverse macrophage populations have multifaceted differences related to their morphology, metabolism, expressed markers, and functions, where the identification of the different phenotypes is of an utmost importance in modelling immune response. While expressed markers are the most used signature to classify phenotypes, multiple reports indicate that macrophage morphology and autofluorescence are also valuable clues that can be used in the identification process.

View Article and Find Full Text PDF

Chemokine (C-C) ligand 17 (CCL17) was first identified as thymus- and activation-regulated chemokine when it was found to be constitutively expressed in the thymus and identified as a T-cell chemokine. This chemoattractant molecule has subsequently been found at elevated levels in a range of autoimmune and inflammatory diseases, as well as in cancer. CCL17 is a C-C chemokine receptor type 4 (CCR4) ligand, with chemokine (C-C) ligand 22 being the other major ligand and, as CCR4 is highly expressed on helper T cells, CCL17 can play a role in T-cell-driven diseases, usually considered to be via its chemotactic activity on T helper 2 cells; however, given that CCR4 is also expressed by other cell types and there is elevated expression of CCL17 in many diseases, a broader CCL17 biology is suggested.

View Article and Find Full Text PDF

Glioblastoma cells adapt to changes in glucose availability through metabolic plasticity allowing for cell survival and continued progression in low-glucose concentrations. However, the regulatory cytokine networks that govern the ability to survive in glucose-starved conditions are not fully defined. In the present study, we define a critical role for the IL-11/IL-11Rα signalling axis in glioblastoma survival, proliferation and invasion when cells are starved of glucose.

View Article and Find Full Text PDF

Cerebral small vessel disease (CSVD) is a leading cause of age-related microvascular cognitive decline, resulting in significant morbidity and decreased quality of life. Despite a progress on its key pathophysiological bases and general acceptance of key terms from neuroimaging findings as observed on the magnetic resonance imaging (MRI), key questions on CSVD remain elusive. Enhanced relationships and reliable lesion studies, such as white matter tractography using diffusion-based MRI (dMRI) are necessary in order to improve the assessment of white matter architecture and connectivity in CSVD.

View Article and Find Full Text PDF

Clinical challenges in pediatrics dose estimation by the displayed computed tomography (CT) dose indices may lead to inaccuracy, and thus size-specific dose estimate (SSDE) is introduced for better-personalized dose estimation. This study aims to estimate pediatric dose adapted to specific size. This retrospective study involved pediatric population aged 0-12 y.

View Article and Find Full Text PDF

Background: Low hemoglobin level is a common cause of donor deferral and results in a huge loss of the donor pool. This study aimed to evaluate the effectiveness of a mobile application as an educational tool to enhance donor return and improve hemoglobin levels after deferral.

Materials And Methods: This was an interventional study involving 382 blood donors who were deferred for low hemoglobin.

View Article and Find Full Text PDF

Cerebral small vessel disease is a neurological disease frequently found in the elderly and detected on neuroimaging, often as an incidental finding. White matter hyperintensity is one of the most commonly reported neuroimaging markers of CSVD and is linked with an increased risk of future stroke and vascular dementia. Recent attention has focused on the search of CSVD biomarkers.

View Article and Find Full Text PDF

Metabolic adaptations can directly influence the scope and scale of macrophage activation and polarization. Here we explore the impact of type I interferon (IFNβ) on macrophage metabolism and its broader impact on cytokine signaling pathways. We find that IFNβ simultaneously increased the expression of immune-responsive gene 1 and itaconate production while inhibiting isocitrate dehydrogenase activity and restricting α-ketoglutarate accumulation.

View Article and Find Full Text PDF

Granulocyte macrophage-colony stimulating factor (GM-CSF) was originally identified as a growth factor for its ability to promote the proliferation and differentiation in vitro of bone marrow progenitor cells into granulocytes and macrophages. Many preclinical studies, using GM-CSF deletion or depletion approaches, have demonstrated that GM-CSF has a wide range of biological functions, including the mediation of inflammation and pain, indicating that it can be a potential target in many inflammatory and autoimmune conditions. This review provides a brief overview of GM-CSF biology and signaling, and summarizes the findings from preclinical models of a range of inflammatory and autoimmune disorders and the latest clinical trials targeting GM-CSF or its receptor in these disorders.

View Article and Find Full Text PDF

Brain image segmentation is one of the most time-consuming and challenging procedures in a clinical environment. Recently, a drastic increase in the number of brain disorders has been noted. This has indirectly led to an increased demand for automated brain segmentation solutions to assist medical experts in early diagnosis and treatment interventions.

View Article and Find Full Text PDF

The cytokine, granulocyte macrophage-colony stimulating factor (GM-CSF), was firstly identified as being able to induce in vitro the proliferation and differentiation of bone marrow progenitors into granulocytes and macrophages. Much preclinical data have indicated that GM-CSF has a wide range of functions across different tissues in its action on myeloid cells, and GM-CSF deletion/depletion approaches indicate its potential as an important therapeutic target in several inflammatory and autoimmune disorders, for example, rheumatoid arthritis. In this review, we discuss briefly the biology of GM-CSF, raise some current issues and questions pertaining to this biology, summarize the results from preclinical models of a range of inflammatory and autoimmune disorders and list the latest clinical trials evaluating GM-CSF blockade in such disorders.

View Article and Find Full Text PDF

Imaging surface deformation of a coupon specimen in microtensile testing with an optical microscope presents challenges due to the narrow depth of field (DoF) of optical microscopes. Materials being heterogeneous at microscopic length scale, the sample surface deforms into a complex 3D surface texture, evolving continuously as the loading increases. Because of the narrow DoF, the region that is in focus within the field of view (FoV) decreases substantially in size with the increasing out-of-plane heterogeneous deformation.

View Article and Find Full Text PDF

Up-regulation of MMP-2 and MMP-9 plays a significant role in promoting cancer progression by degrading the components of the extracellular matrix, thereby enhancing the migration of tumor cells. Although the antiproliferative and apoptotic effect of is well established, its effect on MMP-2 and MMP-9, a major target in several types of cancers, has not been studied. Powdered samples of various parts of A.

View Article and Find Full Text PDF