Heterobivalent fusion aptamers that target a single protein show significant promise for studying protein-protein interactions. However, a major challenge is finding two distinct aptamers that can simultaneously recognize the same protein. In this study, we used a novel technique called Aptamer-Assisted DNA SELEX (AADS) to isolate two distinct aptamers capable of recognizing different sites on the programmed death-ligand 1 (PD-L1) protein.
View Article and Find Full Text PDFUtilizing a novel approach known as aptamer-assisted phage display (APD), we identified an anti-PD-L1 peptide, NV Pep, capable of simultaneous binding to PD-L1 alongside the DNA aptamer MJ5C. Combined inhibition using NV Pep and MJ5C demonstrated significant enhancement compared to individual ligands against the PD-1/PD-L1 interaction.
View Article and Find Full Text PDFWe introduced Ni Apt as the first aptamer with a characterized dissociation constant for recognizing Ni-NTA. Serving as a nucleic acid analog of the His-tag commonly employed for protein purification using Ni-NTA resin, Ni Apt displays a remarkable binding affinity ( = 106 nM) towards Ni-NTA. Furthermore, it can be eluted from the resin using imidazole or EDTA, similar to the removal of His-tag from Ni-NTA resin.
View Article and Find Full Text PDFNobody knows when the COVID-19 pandemic will end or when and where the next coronavirus will outbreak. Therefore, it is still necessary to develop SARS-CoV-2 inhibitors for different variants or even the new coronavirus. Since SARS-CoV-2 uses its surface spike-protein to recognize hACE2, mediating its entry into cells, ligands that can specifically recognize the spike-protein have the potential to prevent infection.
View Article and Find Full Text PDFA universal aptamer against spike-proteins of diverse SARS-CoV-2 variants was discovered DNA SELEX towards the wild-type (WT) spike-protein. This aptamer, A1C1, binds to the WT spike-protein or other variants of concern such as Delta and Omicron with low nanomolar affinities. A1C1 inhibited the interaction between hACE2 and various spike-proteins by 85-89%.
View Article and Find Full Text PDF