Drought is the most important abiotic stress that restricts the genetically predetermined yield potential of the crops. In the present study, four tomato varieties: Kashi Vishesh, Kashi Aman, Kashi Abhiman, and Kashi Amrit, were used to study the effect of PGPMs (plant growth-promoting microorganisms). PGPM strains, BHUPSB14, BHUPSB06, BHUPSB01, BHUPSB0, BHUPSB17, and , were used as the consortium.
View Article and Find Full Text PDFThe Spot Blotch (SB) caused by hemibiotrophic fungal pathogen Bipolaris sorokiniana is one of the most devastating wheat diseases leading to 15-100% crop loss. However, the biology of Triticum-Bipolaris interactions and host immunity modulation by secreted effector proteins remain underexplored. Here, we identified a total of 692 secretory proteins including 186 predicted effectors encoded by B.
View Article and Find Full Text PDFTomato production is severely affected by abiotic stresses (drought, flood, heat, and salt) and causes approximately 70% loss in yield depending on severity and duration of the stress. Drought is the most destructive abiotic stress and tomato is very sensitive to the drought stress, as cultivated tomato lack novel gene(s) for drought stress tolerance. Only 20% of agricultural land worldwide is irrigated, and only 14.
View Article and Find Full Text PDFUnlabelled: Begomovirus associated with golden mosaic disease on vegetable cowpea has been characterized through rolling circle amplification. The genomic components (DNA A and DNA B) were cloned and sequenced. Nucleotide sequence analysis of DNA A (MT671430) and DNA B (MT671431) component had > 98% identity toward the mungbean yellow mosaic India virus (MYMIV) reported previously from India on various legumes.
View Article and Find Full Text PDFPlants have evolved several adaptive strategies through physiological changes in response to herbivore attacks. Plant secondary metabolites (PSMs) are synthesized to provide defensive functions and regulate defense signaling pathways to safeguard plants against herbivores. Herbivore injury initiates complex reactions which ultimately lead to synthesis and accumulation of PSMs.
View Article and Find Full Text PDFDouble transgenic tomato developed by AtDREB1A and BcZAT12 genes pyramiding showed significant drought tolerance by reducing oxidative stress with enhanced yield. Although a large number of efforts have been made by different researchers to develop abiotic stress tolerance tomato for improving yield using single gene, however, no reports are available which targets AtDREB1 and BcZAT12 genes together. Hence, in the present study, double transgenic plants were developed using AtDREB1 and BcZAT12 genes to improve yield potential with better drought tolerance.
View Article and Find Full Text PDFUnlabelled: High-temperature stress severely impacts both yield and quality of tomato fruits, and therefore, it is required to develop stress-tolerant cultivars. In the present study, two tomato genotypes, H88-78-1 and CLN-1621, identified through preliminary phenotypic screening were characterized by analysis of molecular, physiological, and biochemical traits in comparison with a susceptible genotype Punjab Chhuhara. Phenotypic stress tolerance of both the genotypes was validated at biochemical level as they showed higher amount of relative water content, photosynthetic pigments, free cellular proline, and antioxidant molecules while less amount of HO and electrolyte leakage.
View Article and Find Full Text PDFChilli, which encompasses several species in the genus Capsicum, is widely consumed throughout the world. In the Indian subcontinent, production of chilli is constrained due to chilli leaf curl disease (ChiLCD) caused by begomoviruses. Despite the considerable economic consequences of ChiLCD on chilli cultivation in India, there have been scant studies of the genetic diversity and structure of the begomoviruses that cause this disease.
View Article and Find Full Text PDF