Publications by authors named "Achintya Mohan Goswami"

Wnt1 is the first mammalian Wnt gene, which is discovered as proto-oncogene and in human the gene is located on the chromosome 12q13. Mutations in Wnt1 are reported to be associated with various cancers and other human diseases. The structural and functional consequences of most of the non-synonymous SNPs (nsSNPs), present in the human Wnt1 gene, are not known.

View Article and Find Full Text PDF

Candida albicans is a polymorphic, opportunistic pathogen, member of normal human microbiome causing candidiasis. It causes wide range of infections from superficial skin infections to life-threatening systemic infections. The pathogenicity in C.

View Article and Find Full Text PDF

Candida spp. have attracted considerable attention as they cause serious human diseases in immunocompromised individuals. The genomes of the pathogenic Candida spp.

View Article and Find Full Text PDF

Angiotensinogen (AGT) is a key component of renin-angiotensin-aldosterone system (RAAS), which plays central role in blood pressure homeostasis. Association of AGT polymorphisms have been investigated in different ethnic populations in variety of cardiovascular and non-cardiovascular conditions. In this study, 354 non-synonymous SNPs (nsSNPs) of AGT were evaluated to predict damaging and structurally important variants.

View Article and Find Full Text PDF

Malaria remains one of the most serious infectious diseases in the world. There are five human species of the Plasmodium genus, of which Plasmodium falciparum is the most virulent and responsible for the vast majority of malaria related deaths. The unique biochemical processes that exist in Plasmodium falciparum provide a useful way to develop novel inhibitors.

View Article and Find Full Text PDF

Single-nucleotide polymorphisms (SNPs), a most common type of genetic mutations, result from single base pair alterations. Non-synonymous SNPs (nsSNP) occur in the coding regions of a gene and result in single amino acid substitution which might have the potential to affect the function as well as structure of the corresponding protein. In human the 3β-hydroxysteroid dehydrogenases/Δ(4,5)-isomerase type 2 (HSD3B2) is an important membrane-bound enzyme involved in the dehydrogenation and Δ(4,5)-isomerization of the Δ(5)-steroid precursors into their respective Δ(4)-ketosteroids in the biosynthesis of steroid hormones such as glucocorticoids, mineralocorticoids, progesterone, androgens, and estrogens in tissues such as adrenal gland, ovary, and testis.

View Article and Find Full Text PDF

This report provides for the first time a novel environment friendly extracellular synthesis of stable silver nano-bioconjugates (SNBCs) at room temperature at pH 5.0 using Penicillium citrinum MTCC 9999 biomass. The UV-Visible spectral scan of dispersed SNBCs solution showed absorption in the region 340-450 nm due to surface plasma resonance (SPR).

View Article and Find Full Text PDF

Nitrosative stress has various pathophysiological implications. We here present a detailed characterization on the effect of nitrosative stress in Saccharomyces cerevisiae wild-type (Y190) and its isogenic flavohemoglobin mutant (Deltayhb1) strain grown in presence of non fermentable carbon source. On addition of sub-toxic dose of nitrosating agent both the strains showed microbiostatic effect.

View Article and Find Full Text PDF

Protein tyrosine nitration (PTN) is a selective post-translational modification often associated with pathophysiological conditions. Although yeast cells lack of mammalian nitric oxide synthase (NOS) orthologues, still it has been shown that they are capable of producing nitric oxide (NO). Our studies showed that NO or reactive nitrogen species (RNS) produced in flavohemoglobin mutant (Deltayhb1) strain along with the wild type strain (Y190) of Saccharomyces cerevisiae can be visualized using specific probe 4,5-diaminofluorescein diacetate (DAF-2DA).

View Article and Find Full Text PDF