Publications by authors named "Achim Mester"

Electromagnetic induction (EMI) systems are used for mapping the soil's electrical conductivity in near-surface applications. EMI measurements are commonly affected by time-varying external environmental factors, with temperature fluctuations being a big contributing factor. This makes it challenging to obtain stable and reliable data from EMI measurements.

View Article and Find Full Text PDF

Data measured using electromagnetic induction (EMI) systems are known to be susceptible to measurement influences associated with time-varying external ambient factors. Temperature variation is one of the most prominent factors causing drift in EMI data, leading to non-reproducible measurement results. Typical approaches to mitigate drift effects in EMI instruments rely on a temperature drift calibration, where the instrument is heated up to specific temperatures in a controlled environment and the observed drift is determined to derive a static thermal apparent electrical conductivity (ECa) drift correction.

View Article and Find Full Text PDF

Multi-coil electromagnetic induction (EMI) systems induce magnetic fields below and above the subsurface. The resulting magnetic field is measured at multiple coils increasingly separated from the transmitter in a rigid boom. This field relates to the subsurface apparent electrical conductivity (σ), and σ represents an average value for the depth range investigated with a specific coil separation and orientation.

View Article and Find Full Text PDF

To improve the lifetime of lithium-ion batteries, a detailed understanding of the degradation mechanisms is essential. Nuclear magnetic resonance (NMR) is able to unravel the reversible as well as irreversible transient changes of composition, shape and morphology in a battery cell. Using a newly developed cylindrical battery container free of metallic components in combination with a numerically optimized saddle coil, in operando NMR investigations of battery cells over hundreds of charge/discharge cycles are presented.

View Article and Find Full Text PDF